
UTE - /aOELG

[UTE OF TECHNOLOGY

.II j l Ul fl U1111111111 111111111111
Degree of Master of Science

(NASA-CR-128 5 3 9 ) INVESTIGATION OF THE

EPOCH STATE FILTER M.S. Thesis J.A.

Edwards (Massachusetts Inst. of Tech.)

Feb. 1972 212 p CSCL 17G

T-569
PREPARED AT

CHARLES STARK DRAPER LABORATORY
CAMBRIDGE,_ MASSACHUSETTS, 02139

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

I....-

C-1

A I

INVESTIGATION OF THE
EPOCH STATE F I LTER

by
Joan Annette Edwards

February 1972

I I I

I



INVESTIGATION OF THE EPOCH STATE FILTER

by

JOAN ANNETTE EDWARDS

B. S. A. E., PURDUE UNIVERSITY

(1970)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1972

Signature of Author

Certified by

Accepted by

D artment of Aeronautics and

Astronautics, January 21, 1972

Thesis Supervisor

Chairman, De ar mental
Graduate Committee

i



ACKNOWLEDGMENT

I would like to express my appreciation to Dr. Richard H.

Battin, my thesis supervisor, for suggesting that I develop as a

thesis subject, The Epoch State Filter, which he initially conceived

and for reviewing my final paper. I especially owe a debt of gratitude

to Dr. Steven R. Croopnick for his continued assistance and encourage-

ment through my thesis work.

I would further like to thank the Control and Flight Dynamics

Division of the Charles Stark Draper Laboratory for providing this

research opportunity and allowing me to use its research facilities.

A special note of appreciation is extended to the National

Aeronautics and Space Administration and to ZONTA International

for sponsoring my graduate study at M. I. T.

This report was prepared under DSR Project 55-41200,

sponsored by the Manned Spacecraft Center of the National Aero-

nautics and Space Administration through contract NAS 9-10386.

The publication of this report does not constitute approval

of the National Aeronautics and Space Administration or the Charles

Stark Draper Laboratory of the findings or the conclusions contained

herein. It is published only for the exchange and stimulation of ideas.

ii



INVESTIGATION OF THE EPOCH STATE FILTER

by

Joan Annette Edwards

Submitted to the Department of Aeronautics and Astro-

nautics on January 21, 1972 in partial fulfillment of the require-

ments for the degree of Master of Science.

ABSTRACT

A new navigation filtering technique has been formulated using

as state variables the initial or epoch-position and velocity of the

spacecraft. The estimate of this initial state is then improved

by filtering new measurements. The current state may be obtained

by a conic extrapolation of the epoch state. Results of a digital

computer simulation of the epoch state filter show that this formu-

lation of the navigational problem results in less computer run

time and less computer storage space than conventional techniques.

The errors produced by this technique have been demonstrated to be

comparable to those obtained by conventional maximum-likelihood

filter ing.
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LIST OF SYMBOLS

General Notation

An underlined symbol indicates a vector.

A prime to the upper right of a symbol indicates the

quantity is that extrapolated from the previous

measurement time.

A caret over a symbol indicates that the quantity is an

estimate.

A bar over a symbol or group of symbols indicates the

expected value of what is beneath.

A "o" subscript on a symbol denotes an epoch quantity.

A "k" subscript on a symbol denotes that quantity at the

time of the kth measurement.

Symbol

a

a
0

a

a2

b

b
--o

C(t)

c

CSF

! Definition

parameter of the weighting vector

parameter of the epoch weighting vector

disturbing acceleration

reciprocal of the semimajor axis

apriori variance of measurement error

geometry vector

epoch geometry vector

RT - lVT

variable defined in to equation

conventional or Apollo state filter
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6 variation in true anomaly difference 6

6 position deviation from osculating orbit

e error vector E1

2d error incurred using ESF

error in position estimate

E' extrapolated covariance matrix

E covariance matrix of estimation errors

E' extrapolated epoch covariance matrix
o

E0 conic epoch covariance matrix

E ; :" conic epoch covariance matrix0

ESF epoch state filter

variation in generalized anomaly x

f true anomaly

F scalar quantity in T' equation

F
t

scalar quantity in Y equation

F(t) matrix in ~ equation

Fc(t) conic F(t)

g gravitational force per unit mass

G scalar quantity in Y equation

Gt scalar quantity in EY equation

G(t) gradient of gravity vector

Gc (t) conic G(t)

Gad(t) G(t) - Gc(t)

h angular momentum

i unit vector in radial direction

i8 unit vector normal to ir in orbital plane
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i i X e-z -r 

I identity matrix

J2 second zonal harmonic

77 error in velocity estimate

p orbital parameter

q Encke integration variable

6q measured quantity

8q' extrapolated estimate of measured quantity

r position vector

r position

rE equatorial radius of earth

r epoch position vector

r ° epoch position

rc osculating position vector

R ar/avo

R' ar /2_

to epoch time

U gravitational parameter

U nth transcendental function
n

v velocity deviation from osculating orbit

v velocity vector

v velocity

v epoch velocity vector

v epoch velocity

vc osculating velocity

V av/av
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V av 3av

w weighting vector

Lw epoch weighting vector--o

x generalized anomaly

x state vector [r]

estimated state deviation vector

six estimated epoch state deviation vector
-o

epoch to current state transformation matrix

a variational orbital element

ao variational epoch orbital element

8 true anomaly difference

80 deviation in true anomaly difference

860 epoch 6 deviation

total change in e

cos 0 i i-r -z

4, state transition matrix
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CHAPTER I

INTRODUCTION

One of the processes of coasting flight navigation involves

improving the estimate of the spacecraft's position and velocity

vectors. In the Apollo navigation system this is accomplished

with a recursive formulation of the maximum-likelihood es-

timator in which state or process noise is neglected. Measurement

data, regarded as scalar information, is incorporated as it is

obtained to update the estimate of the state. This data handling

technique is termed recursive processing as opposed to batch

processing wherein measurement data is incorporated all at once.

The process of determining the estimate of the state vector

as stored in the on-board digital computer involves integrating

the equations of motion which govern the spacecraft. During

both coasting flight and under the influence of a vector disturbing

acceleration, a
d

, these equations are:

d2r(t) C r(t)
- + - a

d
(r(t))

dt 2 r 3 (t) -

dr (t)
v(t) =-

dt

where r(t) and v(t) are the current position and velocity vectors

of the vehicle with respect to the primary body and /p is the
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gravitational constant of the primary body. Integration of these

equations involves selecting an appropriate set of state variables.

For Apollo, current position and velocity are used to define the

state. Intuitively, this is a proper choice of state variables since

current position and velocity are ultimately the quantities which

are estimated by the navigation filter. Another related set of

variational parameters is the spacecraft's position and velocity

at some initial time or epoch.

The formulation of the space navigation problem using the

epoch state as state variables requires a variation of parameters

solution which is discussed in this thesis. It is shown that this

latter formulation has certain computational advantages over

the conventional one, namely, less computer run time and computer

storage space. The disadvantage, a slight decrease in accuracy, is

introduced because of a simplifying assumption used to integrate

the time derivatives of the epoch state error covariance matrix.

However, in many cases this error is small so that the epoch

formulation of the navigational problem may replace a formulation

such as the one used in Apollo. Various examples are given as

cases where the implementation error is negligible. Also,

statistical equations were developed to predict the filtering

approximations of the epoch state filter.

In Chapter II the conventional formulation of the naviga-

tional problem is discussed in detail. Its design philosophy is

explained as well as how error is propogated and measurement

date is recursively incorporated to improve the estimate of the

2



state vector. Also discussed in this chapter is the design philo-

sophy and choice of state variables for the epoch formulation

of the navigational problem. The equations for the epoch filter

used to estimate the state vector are derived in Chapter III.

Explanation is given for the assumption made to simplify this

formulation. A comparison between the basic equations of the

conventional and epoch filter formulations is also given. Finally,

statistical equations for the error incurred using the epoch

rather than the conventional state filter are derived. Computer

simulation results of the epoch formulation of the navigational

problem are presented and discussed in Chapter IV. Conclusions

regarding the epoch state filter, its advantages and areas of

application are explained in Chapter V.

3
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CHAPTER II

NAVIGATION FILTER FORMULATIONS

2. 1 Design Philosophy for the Apollo Navigation Filter

Position and velocity as maintained in the Apollo Guidance

Computer (AGC) are estimates of the true state of the spacecraft.

These estimates are propagated from measurement to measurement

by integrating the equations of motion of the vehicle with respect to

time. Integration of the spacecraft's motion involves the selection

of an appropriate set of state variables. Current position and velocity

of the spacecraft are used in the Apollo navigation system. Intuitively,

this is a proper choice of state variables since these are the quantities

to be estimated.

The vector equations governing the motion of the spacecraft

during coasting flight are:

d2r(t)
- + r (t) = a d ( r ( t ) ) (2. 1.

dt 2 r 3 (t) d

dr(t)
= v(t) (2. 1. 2)

dt

where r (t) and v (t) are the vector position and velocity of the vehicle

in non-rotating rectangular coordinates with respect to the primary

body and /a is the gravitational parameter of this body. The

4



quantity ad is the vector disturbing acceleration which prevents

the motion of the spacecraft from being precisely a conic orbit. The

disturbing acceleration is a function solely of the position vector.

For earth orbit, only gravitational perturbations due to the non-

spherical gravity field of the earth need be considered in ad. The

equation for the disturbing acceleration used in this study is given by:

a- M 3 J2 (-()2 [(1 - 5cos)i + 2 cos i] (2.1.3)

where 0 is the angle between i the unit vector in the r direction, and-r

iz, the unit vector in the direction of the spin axis; rE is the equatorial

radius of the earth and J2 is the coefficient of the second harmonic of

the earth's potential function.

When jd is small compared with the central field of the primary

body, direct integration of Eqs. 2. 1. 1 and 2. 1. 2 in rectangular coordi-

nates is inefficient. An alternate procedure suggested by Encke , is

used to perform this integration. For the Encke method of integration,

the actual position and velocity of the spacecraft, defined by the current

values of r(t) and v(t), are viewed as deviations from a conic or oscu-

lating orbit

r(t) = r (t)+ 6(t) (2.1.4)

v(t) = vosc (t) + v(t) (2. 1. 5)

In practice, the osculating orbit and the deviations from this orbit

onboard a spacecraft are only estimates of their true values and are

represented with a superscript "^ ". Hence, the current position and

5



velocity estimates are given by

r(t) r osc(t) +

v(t) = v (t) + (t)
-OSC -

(2. 1. 6)

(2. 1. 7)

The osculating orbit at any particular time is determined from

ideal two-body motion by solving Kepler's equation for 3. This is

accomplished by using the following equations for two-body motion:

r = Fr +Gv
-oSC --O --O

vosc = Ftro + Gt-Yo

F = 1 - r (1 - cosa)
p

r
G = r - sin 3

h

(2. 1. 8)

(2. 1. 9)

(2. 1. 10)

(2.1. 11)

Ft ==
t r

o

- (1 - cos O) - sin O
p rh

O

r
Gt = 1 - o (1 - cos 0)

p

1 + ( - 1)cose _ h o sine
ro ro

The parameters in 2. 1. 14 are determined according to the

following equations:

6
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(2. 1. 12)

(2. 1. 13)

(2. 1. 14)



r v
a - - -o (2.1.15)

2
Of .2 . (2. 1. 16)

r o

p=2rt -ro 0 a 0

The deviation vector 6(t) and v(t) are obtained by integrating the

following differential equations:

d 6 (t)
- = v (t) (2.1.18)
dt

dr(t)
-dvt -3- (t[ f(q) r(t) + 6(t)] + d(r(t)) (2. 1. 19)-(2. (.1.19)
dt r 3 (t)

osc

subject to initial conditions 8(t
o
) = _(t

o
) = 0 where

q U 2.r) (2.1. 20)
r2

and

f (q) = q(3 + 3q+q2) (2.1. 21)

1 + (1 + q)3/2

A recommended numerical integration technique, Nystrom's

Method, exploits the fact that ad is a function only of r, the vector to

be integrated.

For Encke's Method to be efficient, the first term on the right

hand side of Eq. 2. 1.19 must remain small, i. e., of the same order or

less as the disturbing acceleration. To insure the efficiency, a new

7



osculating orbit is periodically defined from which 6 and v are cal-

culated. When this rectification is done, the new osculating orbit

is defined by the current values of r (t) and v (t) and the initial condi-

tions for Equations 2. 1. 18 and 2.1. 19 are again set equal to zero at

the current time.

2. 2. Error Covariance Matrix

The position and velocity vectors which are stored in the Apollo

Guidance Computer (AGC) are estimates of their true values. Since

these estimates will be in error, it is necessary as part of the

maximum-likelihood filtering technique to maintain the statistics

associated with these errors.

If e (t) is the three dimensional error in the position estimate

and X (t) is the three dimensional error in the velocity vector, then

the error in the estimate of the state vector is given by

e(t) = (2.2.1)

_ (t)

When unbiased measurement data is processed to determine

the maximum - likelihood estimate, the error in the estimate has a

zero mean, i. e. e = 0 so that the 6 x 6 covariance matrix of estima-

tion errors is defined by

T T

E = ee = _ _ (2. 2. 2)
__,(T T

8



and is also stored in the AGC.

A useful measure of the error in the position estimate is given

by the rms position error. This error is determined by the square

root of the trace of the upper left hand 3 x 3 partition of the covariance

matrix and is given by

-T) 1/2
rms position error = Ltr (fk e k(2.2.3)

Similarly, the rms velocity error, a good measure of the error in the

velocity estimate, is determined from the lower right hand corner

of the covariance matrix according to

rms velocity error = [tr (ik k 2 ] (2. 2.4)

With the recursive formulation of the Kalman estimator, mea-

surement date is processed as it is obtained. The covariance matrix

is maintained in the AGC in the intervals between which measurements

are taken and is updated as is the current estimate of the state vector

when the measurement data is incorporated by this linear estimator.

The Kalman filter operates as follows. First, the old estimate

is extrapolated to the current time, yielding the best estimate prior

to the incorporation of measurement data. For coasting flight

E (tk 1) is extrapolated to the current time, tk, by

E'(tk) = (tk tk_) E (tkl) P(tk, tk )T (2.2.5)

9



The prime ' to the upper right of E(tk) indicates the covariance matrix

of estimation errors at tk is that based on previous k- 1 measurements

and 1D (tk, tk - 1) is the 6 x 6 state transition matrix by which the

state and certain statistical quantities are extrapolated in time from

tk 1 to tk . The transition matrix satisfies the first order matrix

differential equation

1(tk, tk 1
) = F(t) 4c(tk, tk 1

) (2.2.6)

subject to the initial condition

· (t o t
0
) = I

where I is the 6 x 6 identity matrix,

0 I
F (t) = (2. 2. 7)

(t) 0

where

G(t) = II II
br

The 3x 3 matrix G(t) is the gradient of the gravitational field g with

respect to the components of the position vector r. For orbital

navigation about a primary body, G(t) is given by

10



G(t) -/1 [3r(t) r(t)T - r2 (t) I] (2.2.8)
r 5 (t)

An alternate method of extrapolating the covariance matrix

rather than by first determining C(tk, tk 1) and then substituting

this matrix into Equation 2. 2.5 is to integrate the first order differen-

tial equation for E'(tK )

E(tk) = F(tk) E(tk) + E'(tk) F(tk)T (2.2.9)

This is obtained by differentiating Equation 2. 2.5 with respect to time

and substituting Equation 2. 2.6 in the resulting equation, the deriva-

tion of which is given in Appendix A.

Once the extrapolated covariance matrix is obtained, the

measurement data is incorporated according to optimal estimation

theory. As a result of the measurement incorporation, the statistics

of the error covariance matrix are changed. A weighting vector w

is determined which minimizes the mean squared error in the esti-

mate. According to maximum-likelihood theory, the weighting

vector is given by

= 1- E b (2. 2.10)
a -

where b is a 6 dimensional geometry vector associated with the

measurement and

a = bT E b + (2.2.11)

11



where a is apriori variance of the measurement error. In terms

of E'(tk) as well as Equations 2. 2.10 and 2. 2. 11, the new value for

the covariance matrix of estimation errors is determined according

to

E (t k ) = E'(t k ) - bT E (t k ) (2. 2. 12)

or

E(tk) = (I- bT) E (tk) (2. 2. 13)

2.3 Measurement Incorporation

For flight paths which are close to a nominal one, 6x may

be expressed as a linearized deviation about the nominal state and

is denoted by

6r

6x = (2. 3. 1)
6v

The estimate of the state vector is obtained by the operation

of the optimum linear estimator on the state deviation vector. First,

the previous state deviation estimate is extrapolated to the current

time yielding its best value prior to the incorporation of new infor-

mation. This is expressed by the following relationship

Ox' (tk) := (tk, tk-l) Ox (tk 1
) (2.3.2)

12



where ' (t
k
, tk 1) is the state transition matrix. The best estimate

of the measured quantity 6 q', is computed according to

/(t
k

) T ' ( k )6 q k) = ~~~~~~~~~~b 6 x' (t k (2. 3. 3)

The difference between the actual measurement data 6q and

the filter's prediction of what this value should be 6q' is weighed

statistically against 6x'. This is accomplished through the use

of a statistical weighting vector cW defined by

E 'b
X = -a

a
(2. 3. 4)

where

a = E b Et+ 0t (2. 3. 5)

Making use of Equations 2. 3. 2 through 2. 3. 5, the updated state

estimate at measurement time tk is obtained from

(2. 3. 6)

13



Equation 2. 3.6 is simplified by adding the estimate of the state

deviation from the nominal path to the current state;

-nom (t k ) = x(tk ) + 6 x(tk) (2. 3. 7)

so that a new nominal path is defined at every measurement time tk.

By adding 6x to the current estimate of the state, the spacecraft

is assumed to be on the nominal trajectory which is redefined at

each measurement time. The extrapolated deviation of the vehicle

from the nominal path at time tk is then zero since the spacecraft

was on the nominal trajectory at time tk_ 1 This is illustrated in

Figure 2. 1.

The equation for determining the state deviation estimate

at tk then reduces to

6x (tk) = X q (t
k

) (2. 3. 8)

This is seen by substituting 8 x'(tk) 0 in Equation 2.3.2 and noting

that 6 qt' which is a function of Ox' (t
k

) is also zero.

2. 4 Design Philosophy of the Epoch State Filter

Current position and velocity of the spacecraft are the typical

vector quantities which are estimated by a spacecraft computer doing

recursive processing such as the AGC. These quantities vary con-

tinuously along the path. An estimate of the current state is obtained

by integrating the equations governing the motion of the vehicle. In

14



Path Defined at tKl 1

X(tK)

final Path Defined at tK
C2 (tK)

A

XNOM (tK)

Figure 2. 1 Effect of adding the expected deviation of the

state x to the expected state x af time tK
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the Apollo formulation of the navigational problem, current position

and velocity along the path of the spacecraft are the quantities

used in the integration of these equations. This is a convenient

and intuitively correct choice of state variables since current position

and velocity are the quantities to be estimated. Estimation of

the state vector is then made by incorporating measurement data

using Kalman gains in the space navigation filter. This current

measurement information is used to update the current estimate

of the position and velocity vectors.

The formulation of the navigational problem developed in

this paper employs a related set of state variables, namely, the

position and velocity of the spacecraft at some initial or epoch

time which are adjusted in a manner such that a simple conic

trajectory connects this point with the current position. This

adjustment is made so that the extrapolated velocity also matches

the current velocity at the current time. A scalar variational

parameter is also used along with the above two vector quantities,

as a means of extrapolating quantities from the epoch to the current

state. This is the true anomoly difference, 0, the central angle

between the current and the epoch position vectors and is considered

the independent variable.

Because the epoch state is not accurately known initially,

measurement data is incorporated using a Kalman filter to estimate

these initial conditions. This is analogous to what is done in Apollo

however, for that formulation of the navigation problem, measurement

data is used to improve the current estimate of the state. When

16



sufficient new information is incorporated, the epoch state vector

is brought up to the current time by solving Kepler's equation.

The main difference between the conventional and epoch

formulation of the navigational problem is illustrated in Figure 2. 2.

In the conventional state filter, current position and velocity are

used as state variables whereas for the epoch state filter, epoch

position and velocity are used as state variables. These epoch

quantities are integrated between measurements and then updated

at the current time using current measurement data.

The epoch formulation of the navigation problem developed

in this thesis makes use of the variable epoch form of the variational2

equations. This means that the epoch time, to, is forced to vary

in the intervals between measurements. The variable epoch form

of these equations was used because of their relative simplicity

when compared with the fixed epoch form, however, the navigational

problem could just as well have been formulated using the fixed epoch.

form of the variational equations for which to = 0. This feature is

explained in Chapter III.

Rather than using the true anomaly difference e as the indepen-

dent variable, the generalized anomaly, x, may be treated as the

scalar variational parameter. Solving a differential equation for x

eliminates the necessity of solving Kepler's equation for this same

variable in the same fashion as integrating the differential equation

for e eliminates obtaining Kepler's solution. Still another differential

equation in terms of the epoch time, t o , can be integrated instead

17



of spacecraft

tK

\
Measurement

Interval

X
-o

(to ), Eo (to )

Xo (tK ) Eo (tK )

X (tN), Eo (tN)

Epoch formulation of the Navigational Problem

Path of spacecraft. tK

to
'

X(tK)

X(t)
-- o

Eo(to )

E(tK) X (tN )

E (tN)

Figure 2. 2 Conventional Formulation of the navigational problem.

18

tN

X (tN)



of the two equations indicated above. However, solving this

equation for to necessitates solving Kepler's equation for x.

Position and velocity were chosen as state variables for both

the Apollo and the epoch formulations of the navigation problem for

convenience, because this state is the quantity that is estimated by

the filter. However, other variational parameters may be used

to formulate estimates of the current state vector, such as the

orbital elements. Equations for this formulation are developed

in Reference 2.

19



CHAPTER III

THE EPOCH STATE FILTER

3. 1 Derivation of the Epoch State Filter

Current position and velocity are the state variables used in

the Apollo navigation filter and in the integration of the equations

of motion of the spacecraft. The current state is estimated by

measurement data which is incorporated to update the current state

estimate directly.

For the Epoch State Filter (ESF), position and velocity of the

vehicle at the epoch time are the state variables which are used

in the integration of the equations of motion. This filter estimates

the current state indirectly by first estimating the epoch state.

Current measurement data is processed to update the epoch state

estimate. The improved current state estimate is then obtained

from the epoch state estimate by conic extrapolation.

The state equations of motion used for the ESF formulation

are derived as variations of the epoch state, r and v . An

additional differential equation in terms of the independent scalar

variable e is also integrated. Theta, the true anomaly difference,

is the angle between the epoch and current position vector as

illustrated in Figure 3. 1.

20



v

r

- o

eO-o

Figure 3. 1 The True Anomaly Difference
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These differential equations for r v, and 0 (derived in
--O'

Section 3. 3) are integrated to propagate the estimate of the epoch

state before the new information is introduced. Measurement

data is then incorporated to estimate the epoch state deviation,

6 x (t), from its nominal value at the current time. This is related

to the estimate of the current state deviation 6 x (t) by

6 x 6- (3. 1. 1)
-o

in terms of the state transition matrix 4 (t, to). The current state

estimate, 6x, determined by Equation 2. 3. 6 is rewritten here as

6x 6x + C (6 q- bT 6' ) (3. 1. 2)

replacing 6 q' by its equivalent bT 6x' where

E'b
X = ~Eb (3. 1. 3)

a

The current covariance matrix of estimation errors, E', before

the measurement is incorporated is related to the epoch covariance

matrix by

E = ~ E T (3. 1. 4)
0

Substituting Equations 3. 1. 2 through 3. 1. 4 into Equation 3. 1. 1

and bracketing significant terms yields
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6x = [ 1 '] + c>-1 )E 'E ([,TIb]/a) (8q- bT Ox (3. 1.5)

The product - 1 D is the identity matrix so that the first term in

brackets is just 6x, i. e.

l 6'x' = §X1
-O0

(3. 1. 6)

and bo is related to b according to

b = T b
-o -

(3. 1. 7)

so the second term in brackets is bo. When Equations 3. 1. 6 and

3. 1. 7 are substituted into Equation 3. 1. 5 the resulting equation is

(3. 1. 8)
^ ~^ I I, 6x .b T-- 0 6 x + [Eol bo /a] (.6-- b 6 ~:')-o ~--0 -- -

The term in brackets can

where

be defined as the epoch filter gain o'
-o

E b
o -o

Wo -
a

(3. 1. 9)

Substituting Equation 3. 1. 9 into 3. 1. 8, post multiplying b T in

Equation 3. 1.8 by the identity matrix t4 1, and bracketing significant

terms yields

^ '" I TAt~
6Ž0 = 6;: + L (6q- [bT(DI [,~ 1 6x ])-o0 - (3.1. 10)
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But

mT 
bT i b T (3.1. 11)-o

and

6x = 6 x (3.1. 12)

When Equations 3.1. 11 and 3. 1. 12 are substituted into Equation 3. 1. 10

the resulting equation for the ESF is

6x o = 6 x + (6q - b x ) (3.1. 13)--O -O -o -O

As is done in the Apollo navigation system, 8x
°

is added to the

estimate of the total state vector so that the nominal path is redefined

by the kth measurement. Therefore, for the nominal path defined

by the (k- l)th measurement, the extrapolated estimate of the

deviation from the nominal trajectory is zero, i. e. 6xo (t
k ) = O

as illustrated by Figure 3. 2. Substituting x ' = 0 into Equation

3.1. 13 yields

X= -o bq (3.1. 14)-o

which is the ESF equation for incorporating scalar measurement

data to update the estimate of the epoch state.
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NOMINAL PATH DEFINED BY (K-1)TH MEASUREMENT

tK-1

tK
Xs (tK- 1 )
-0

s8o (tK) = ox 

/-o (tKl)

A

xo(tK

Figure 3. 2 Redefinition of the Nominal Path
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3. 2 Derivation of the Error Covariance Matrix Used in the ESF

The equation for the epoch error covariance matrix Eo

associated with the state deviation 8x 0 is obtained from the covariance

matrix equation developed in Section 2. 2

E k =bT Ek (3. 2. 1)k k - k

where the subscript k indicates the quantity at time t
k. Noting the

relations between the epoch and current parameters

Ek = Qk'O Eo Qk,O (3. 2.2)

T
Ek k0 E 0k, T (3.2.2)k Eo k , 0

and substituting these into Equation 3. 2. 1 yields

E 4 T = _ E T I ' -T- E ,T (3. 2. 4)
a

where w in Equation 3. 2.1 has been replaced by

Ek b
W= Ek(3.2.5)

a.

and the subscripts on Dhave been dropped for simplicity.

Premultiplying Equation 3. 2. 4 by q 1, postmultiplying by

T-1l
CD I and grouping significant terms produces the following equation
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E ' [ T b]
E = E 0 - 0 [[bT c] E0

a

b = bcTb-0O

(3. 2. 6)

(3. 2. 7)

so that

b = bT 
-0

The first term in brackets is then b and the second is b T
-0Rewriting -o2. 6 making these substitutions yields

Rewriting Equation 3. 2. 6 making these substitutions yields

(3. 2. 8)

E = E
o 0

EI
o bo

bT E
a - 0a

by defining the new variable w as
-o

E b
o -o

-o
a

Equation (3. 2. 9) reduces to

TE = E -Wo b E
0 0 0-0 0

(3. 2. 9)

(3. 2. 10)

(3.2. 11)

Equation 3. 2. 11 is of the same form as Equation 3. 2. 1 but the "k"

subscripts of the latter equation have been replaced by "O" subscripts

in the epoch form.
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The"a' in Equation 3. 2. 10 is equivalent to the epoch quantity ao

as demonstrated by the derivation. Rewriting the equation for a

a = bT E k b + c2 (3. 2. 12)

and substituting for b T and b in terms of their epoch quantities,

and bracketing significant terms yields

a =bTo [k -1 Ek T1 2 (3. 2. 13)-0 k, o 'k k, o o0

The term in brackets is Eo so that Equation 3. 2.13 reduces to

a = b T E b + a (3. 2. 14)-o O -o

which is the expression for ao, hence

a0 = a (3.2. 15)

3. 3 Explanation of Assumptions Made to Integrate the ESF Equations

The position and velocity, r (t) and v (t) respectively, in the

Apollo navigation filter are updated in real time and change continu-

ously along the path. For the epoch state version of the navigation

filter the initial position and velocity, r and v 0 , are updated at
-o -O

measurement times; however, between measurements these

vectors remain constant. Similarly, the initial error vector,

e
o
, is constant between measurements. Thus between measurements:
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e = constant
-O

so the time derivative of the error vector is zero, i. e.

e =O
-o -

also, since

T
E = e e

0 -0 -0

(3. 3. 1)

(3. 3. 2)

(3. 3. 3)

the time derivate of the epoch covariance matrix is zero

T T
E = e e + e e

0 -0 -0 -0-0
(3. 3. 4)

Therefore, between measurements

E =0
o

(3. 3. 5)

Unlike the current error covariance matrix, E(t), which

changes continuously along the path, the epoch covariance matrix,

Eo, remains constant between measurements so that it does not

have to be propagated. In the interval between the (k- l)th measure-

ment and the kth measurement, Eo remains constant or Eo (tk)= E (t- 1)

as illustrated graphically in Figure 3. 3.

For ideal two body motion the above results may be applied

exactly. Also, (d, the transition matrix, may be calculated

analytically for a conic path.
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Eo (t )

Figure 3. 3

tK-1 tK t

Graphical Illustration of the Components of E.
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With a disturbing acceleration, ad, present, the concepts

derived above still hold, i. e. the epoch state and epoch covariance

matrix may remain constant within measurement intervals. But

motion under the influence of a disturbing acceleration is not two

body motion. The equation governing the motion of the spacecraft

is then

r + r = a
d
(r) (3. 3. 6)

-3

In order to use the two-body formulation of the navigational problem,

the disturbing acceleration is considered to perturb r and v from-o -O

their nominal two body values. Similarly, e 0 and thus E
°

are

perturbed from their ideal two body values. However, because these

change only slowly for non- ideal two body motion, the perturbations

are ignored and Eo is not propagated between measurements. Proof

that E o for the actual path is close to E o for the conic path and

varies only slowly is given here, thus validifying the approximation

that E = 0 for the actual path. Remember that E = 0 for the

conic path is exact.

Let the "c" subscript on the state transition matrix c and the

* superscript on the covariance matrix E denote the values of these

quantities for the conic path. See Figure 3. 4 for an illustration

of the conic and actual path and their related quantities.

The differential equation for '6 as given in Section 2. 2 is

= F (3.3.7)
dt
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E (t) E (t)

E* (t) - E (t)

'CONIC PATH (gd-O

t=O

PATH (aCldO)

t =0O

Eo

Figure 3.4 Illustration of Actual Path to Which the Conic Path

of the Spacecraft is Matched
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0[G
For the conic path, the differential equation is

d4c
C

- Fc cdt c c

The current covariance matrix E(t) in terms of the epoch covariance

matrix for the actual path is given by

(3. 3. 10)

(3.3. 11)E (t) = E(t)

c E c E (3. 3. 12)

Solving for Eo in Equation 3. 3.12 and grouping significant terms

yields

E = [ c-l bI Eo [T cT- l] (3. 3. 13)

Define the new variable <DT as
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but

so



-1
10T 4 C4 (3. 3. 14)

so that Equation 3. 3. 13 expressed in terms of cPT is

Eo = T Eo C

4D expressed in terms of c T is

c PT = 

(3.3. 15)

(3.3. 16)

Taking the time derivative of 3. 3. 16 yields

ic {T + Cc T 
=

~ (3. 3. 17)

Substituting Equation 3. 3. 9 for 0- and 3. 3. 7 and 3.3. 16 for Z,
C

Equation 3. 3. 17 becomes

Fc c bT + (c T = F ,c T (3.3. 18)

Collecting like terms Equation 3. 3. 18 reduces to

(cP T = (F- F
c
) Tc CT (3. 3. 19)

Solving for cZT yields

(3. 3. 20)

(3. 3. 21)

T = [,o c

-

(F- F c ) c] OT

T = PT ~T
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SO

FT = c-1 (F- F c ) c

Rewritting F - F c in terms of its constituents

F- F =
c

0 IEGOJ
and simplifying replacing (G -

F-F
C

Defining F - F c as Fad so that

G OL
Gc~b ~ ad F- s g v

(3. 3. 23)

Gc ) b y Gad, F - F c is give:

O O

Gad O

Equation 3.3.22 becomes

FT = 1 F P-1
T c ad c

n by

(3. 3. 24)

(3. 3. 25)

Equation 3. 3. 20 is then written as

ad 1 
T 

=

~c Fad 4c DT (3. 3. 26)

By observing the components of Equation 3. 3. 26 it is seen that cZT

is small;also since initially AT (to, to) = I, ST remains close to I,

and from Equation 3. 3. 16 it is seen that

(3. 3. 27)
- 4 c
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Also, since

T

Eo = T Eo ~T

and M
T

is close to I

E E (3. 3. 28)
o o

The assumption that Eo = O between measurements for

non ideal two-body motion greatly simplifies calculations. The

epoch state covariance matrix does not have to be propagated

within measurement intervals. Also, because 1 is close to bD,

the transition matrix may be calculated agebraically, as in the

case for ideal two-body motion, as opposed to integrating a differ-

ential equation for cb.

Analytical calculation of the state transition matrix, A, is

explained here. Consider the state vector x wherd

xr
x = l (3.3. 29)

v

r and v are functions of initial position and velocity

r = r (r, v, t) (3. 3. 30)

v = v (_rVo, t) (3. 3. 31)
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and t is the independent variable upon which ro, v and thus r and v

are dependent. Taking partial derivatives of r and v at time t
k

yields

ar ar
6r k - 6 r + - 6v (3. 3. 32)k -o -O

8r 5v

av
_k a -v (3. 3. 33)6v 6r + 6v0 (3. .33)

- -0

Expressing Equations 3. 3. 32

6r
k

6v
k

Defining the 6

to r ° and v as 4(tk,
0 -- Ok

a r

5ro

av

a r

and 3. 3. 33 in matrix form results in

5r1 6rr 1

-o

av

av
-o

--

o

(3. 3.3 4)

X 6 matrix of partial derivatives with respect

to ) Equation 3. 3. 34 becomes

6 xk = P (tk, t 0 ) 6XO (3. 3. 35)

The partial derivatives of the state transition matrix as given

in Reference 2 are written here

Qr - T
_ - V(to)

6r0
--0

(3. 3. 36)
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av

a r
-o

ar

-O

= (t* (to)T - R(t)T -

R(t) - - (to)T

av
= V(t)

av
-- O

T-1 TC(t) = R VT

The R and V matrices are given by

R(t) =1 {[U2 (r-
A~t

r ) + c v]v T-o - -o -U 2 (v-.v o )_o T +G.I

V(t) =- (U2 r ro
T r

- crv T)+ o~---0
II

(v - o) (v -
Tv ) +Gt I-o 

where

/-IC = 3U 5 - X U - U 2 J-(t- t o )

and x is obtained by solving Kepler's equation. The R and V

38

(3. 3. 37)

(3. 3. 38)

(3. 3. 39)

where

(3.3.40)

(3. 3.41)

(3. 3. 42)

(3. 3.43)



matrices obtained from Equations 3. 3.41 and 3. 3.42 by interchanging

x and t by -x and -t as well as interchanging r, v and ro, v are

R(t) =1 [U 2 ( r)- CV] vT - U
2

(v v) rT } GI (3. 3. 44)

:: 1 r T T r TV (t) = (U r r + cr v)+ (v - v) (v - v ) + F I (3. 3. 45)3 2-U - +c -r
r o L/

Because of the assumptions allowing for the analytical

calculation of cS, computer run time and computer storage space

are conserved. This approximation is not without some loss of

accuracy, however. The variation of parameters equations for

r and v derived in section 3. 4 are exact but the way they are used-o -o

introduces some error in <D. That is, the position and velocity of

the spacecraft are matched with the position and velocity of a

conic path yielding a conic epoch position and velocity that differ

from the actual r and v .

3. 4 Derivation of the Variational Equations

The variational parameters for the epoch state filter are the

epoch state variables r and v
o
, and the true anomoly difference e.

Derivation of the variational equations in terms of these parameters

is presented here.

Current position and velocity vectors r and v can be expressed

in terms of their values r and v at some epoch time to as follows--O -0 0
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T T
r r r$j V I F; Gt I K VO j (3.4.1)

or

(3. 4. 2)
T T

defining the matrix of scalar quantities F, G, Ft, Gt as Y where

2 1
F U 1 (r U- U 1) (3. 4. 3)

r r

-G = U U2 (3. 4. 4)

and

a = - r v (3. 4. 7)

The U functions used in this derivation are given in terms of G as

U = 1 - rr -(1- cos 6) (3.4. 8)
o
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r r cr0
U = r sin - -

lJFP P

U
2

=

(1 - cos 8)

rr
P 1 - cos 8)

P

U3 = ^ (t- t o)
rr

o

Af-

sin e

r =

1 +(P 
r

o

p

h (Yo
1) cos -8 sin 0

2 2
p = 2r -v r - a 0 o

22 v
r i.

1
Co ./ r £ 

Equation 3. 4. I1 may be solved for rO and v by premultiplying both-O--O

sides of the equation by T/-1 thus obtaining

T T
r r G

t
= -1

T T
v o T v -F

t

-G

F

(3.4. 16)
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(3.4. 9)

with

(3.4. 10)

(3.4. 11)

(3.4. 12)

and

(3.4. 13)

(3.4. 14)

(3. 4. 15)

T
r

T
V



where the determinant of the matrix lY is unity. The perturbation

derivatives of r and v 0 may now be calculated from Equation

3.4. 16 applying the formal rules for variation of the orbital elements.

Briefly this means Equation 3. 4. 16 is to be differentiated according

to the usual rules of differentiation but r is treated as a constant

and the orbital elements as variables. The term dv/dt is replaced

by a and dx/dt by d~/dt where ~ represents the change in x arising

solely from changes in the orbital elements due to a d

Formal differentiation of Equation 3. 4. 16 yields

Tdr
-o

d t

dvT
-o

d t

d -

dt

rT

Tv

+ ly -1

0 1

a d

(3.4. 17)

where

d -1
is defined in terms of its

dt

d- 1

dt

components

d dt

dt

dF t

dt

as

dG

dt

dF

dt

(3. 4. 18)

d G
The upper left-hand element of 3. 4. 18, is obtained by

dt
formally differentiating Equation 3. 4. 6. Thus,

dGt 1

dt r

dU2 (x; of)

dt

42
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d U 2 (x; C)
where is derived in Reference 2 using the formal rules

dt

for variation of the orbit elements and is written here as

dU 2 2 d3
1 U + -2) (1/2)U22 d(3.4.20)

dt dt dt

The perturbation derivative for a , the reciprocal of the semimajor

axis, is given by

d~ 2
2v a (3.4.21)

dtdt A - -

In order to express Equation 3.4. 20 in terms of G
t

and Ft, the

first term on the right-hand side is multiplied and divided by

J/1 j/r and1 U2 v * ad is added to and subtracted from the second

term so that

dGt ( d + 1/2 dU ) 1 U 2v 
dt AJ- dt M dt ro r Ar -

+ 1 U v a d U v a d (3. 4. 22)2 - d -

The term in brackets is Ft and the third and fourth term simplify to

U2 -v -a d Gt so Equation 3. 4. 22 becomes
ILt
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dG r
d Gt 1 r d ddt = 1 U2 . v a

d t
+ ( . + 1/2 U 

d3
t

dt 9 / ~ dt dt

- U v a
A 2- -d

Similarly,

Equations

dG

dt

differentiating the expressions for G, Ft and F the following

are obtained

v ad G_ ( dt + 1/2 U3 d ) F

AI Id /A dt dt
(3. 4. 24)

+ 1 r · a U2/I - -d 2

dFt = FA ( d + 1 U d ) G -

dt r 2 dt 2 dt
O

r (v - v) a d F t

P d.t

dF =_ -/ (d2 + 1/2 U 3 d ) G+r (v - v).a F (3.4.26)
dt r 2 dt dt - -d

_ (v - v) adF

Details in the derivation of Equations 3. 4. 24 to 3. 4. 26 are given

in Appendix C.

Equations 3. 4. 23 to 3. 4. 26 can be expressed in matrix form

as a matrix multiplied by Y 1 plus another matrix, that is
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(3. 4. 25)



-1

dt

+

1 U v a
A 2- - 3d

r d
, | to 2 dt +(1/2)3 -da

r2 t dt
o _

1 T- U v ad
tl

O

/7 Ldt d tJ

r (vo
T

_ vT
) ad

1 T
1 U r T ad

_ r (v T
I -o

- vT ) ad- -

The variational equation for the epoch time, to, may be

calculated from Kepler's equation

,j (t- to) = r 0 U
1

+ U 3
= rl U 1 - U 2 +U 3

by formal differentiation, treating t as a constant and using the

variational equations for the time derivatives of the U functions

given in Reference 2. This equation is

to d- 1 /r cU d2 +U2 do
d t dtJ 2 dt dt

where c has been defined by

,1/- c = 3 U5 x U 4 - U2 ' (t- to)

45

(4-1

(3. 4. 29)

(3. 4. 28)

(3. 4. 29)

(3. 4. 30)



If t varies so that d +(1/2)U = 0, Equation 3.4.29 reduces to
dt dt

dt U2 d

-° -_(1/2) c Ad +__ (3.4.31)
dt dt AJg dt

When da is replaced by Equation 3. 4.21 and da by the following
dt dt

variational equation

da =_ 1 r . a

dt -- 

the variational equation for the epoch time becomes

dt o0 1
°- = (cv + U2 r) ad

dt L

(3. 4. 32)

(3. 4. 33)

Getting back to
dt

,when- d +(1/2)U da = 0 is substituted
dt dt

into Equation 3. 4. 27, this matrix simplifies to

1 v T
a

- -d

O

1 U2 vTad
2 - -d

0

r (voT _v T
) a

1 U 2 r
-A1

r

At

T a
d

(VoT- v T
) a

d )
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d - 1

dt

+

Gt

-Ft

-G

FF
(3. 4. 34)



Taking components of Equation 3. 4. 17, the perturbation

derivatives of r and v are expressed as
-o -o

Tdr
-o

dt

d Gt T
= -r
dt

dG T- dG v -Ga
dt -d

dv T dF
do dFt T dF T

- r + .v + Fa
dt dt - dt -d

Multiplying out the matrices of Equation 3. 4.34 produces

(3. 4. 35)

(3. 4. 36)

1 U2 T ad Gt

r (v T
I -o

- v )a Ft
_ -d t

- 1 U2 vT a G

r T- r (V T v T ) a
A -0 - -d

+

1i r 1
-i 2-

- I U2 v ad

O
r T- - (v T
- -ota

r
a d

T
-v ) a- -

(3. 4. 37)

L - 1 1
When the related components of from Equation 3.4.37

dt

are substituted into Equation 3. 4. 35, the result is

U .T T T T
= 2 [vT ad G rT -v a Gv

., - - - d -
T T- v a rT

_ _d-

+ rTad vT] - Gad

47

d Y- 1

dt
F

Tdr
-o
A +
d t A

(3. 4. 38)



Collecting like terms and making the substitution r T= T-0G t - GT

produces the following equation

U2 T
- (v a dr

AI' dO

T T T T T-v a r + r a v ) - Gad (3. 4. 39)

Finally, taking the transpose or Equation 3. 4. 39 and collecting

like terms results in the variational equation for r
-o

(3. 4. 40)

-1
Similarly, when the related components of from

dt

Equation 3. 4. 37 are substituted into Equation 3. 4. 36 the result is

Tdv
-o r Td _= r[ (vT
dt , -O

- v
T

) a d Ft r+ (voT v ) a d Fv T
- d t- 0 - d 

- (Vo T
- v ) a

d
v

T
] + F a

Making the substitution v T = F r T + F v T in Equation 3.4.41
-yields

yields

T T
T v)a v

- d -0
T T T 

-(v t v
T

) a d v T ] + Fa d (3. 4. 42)

Transposing Equation 3. 4. 42 results in the following variational

equation for vo .
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dr T
-o

dt

(3. 4. 41)

dvT
-o

dt AI



(3. 4. 43)

Using the following relation derived in Reference 2

d +(1/2)U3 d_
dt dt

- /Tro d6

h dt

_ ,i (_G h
r h

where G obtained form Equations 3. 4. 4, 3.4. 9, and 3.4.10 is

given by

rr
G = o sin e

h

and 6 is determined according to
dt

d6 _ de h

dt dt r 2

8 being the variation in the true anomoly difference 9.

3.4.47 is obtained when d +(1/2)U 3 da is set equal
dt dt

Equation

to zero and

substitutions 3. 4. 45 and 3. 4. 46 are made in Equation 3. 4. 44. Thus,

d8 h ) / rr
60= ( dO - h ) _ W (- sin 8 h x r +

h dt r 2 r h

Solving for d in the above equation results in
dt

3

dO = h + 1 [sin e h x r + 2 r] . a
d

dt r 2 h 2 - - rr
O

U2

-_ r) .ad
IA
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(3. 4. 45)

(3. 4. 46)

(3. 4. 47)

(3. 4. 48)

U 2x r + r) ad (3. 4. 44)
A~~



Recalling Equation 3. 4. 10 for U2 where

h 2

p (3. 4. 49)

The second term in the brackets is

3
hU 2

r = h (1 - cos e) r (3.4.50)
#rr 

Therefore, the variational equation for the independent variable

e is

de = h + -1 [sin B h x r + h(1 - cos ) r] ' a (3.4. 51)
dt r 2 h2 - - -

Equations 3. 4. 33, 3. 4. 40, 3. 4. 43, and 3. 4. 51 are the variable

epoch form of the variational equations. This form of the variational

equations was used in this thesis for simplicity, since the term

d . + 1 U3 d was eliminated by forcing the epoch time, t
o ,

dt 2 dt
to vary according to: to - (c v + U2 r) ' ad. The variational

equations for the fixed epoch case are obtained by setting to = 0 in

Equation 3 4. 29.

3.5 Effect of a Measurement on the True Anomoly Difference e

When a measurement is taken, current time is essentially

stopped and the epoch time, to, remains fixed. Holding the epoch

time constant during a measurement incorporation in the variable

50



epoch case does not introduce inconsistencies from the time-of-flight

standpoint, since the state transition matrix relates variations

in the state at the given "t" to state variations at the current

time "t". However, since 8 is the angle between the epoch and

current position vectors and because measurement incorporation

changes the estimate of these vectors by 6_o and 6&f respectively,

the true anomoly difference may change by an amount A e. This

is illustrated in Figure 3. 5. The epoch variation in the true anomoly

difference is given by

i 'r

6e0 = (3.5.1)

r

where i is the unit vector in the direction of the epoch change in 8
-0

-o

anomoly difference is given by

i 6r
68 =-e -(3.5.2)

r

The total change in 8 is the difference between the current and the

epoch deviations, that is,

be = 50- 60 o (3. 5. 3)

Substituting Equations 3. 5. 1 and 3. 5. 2 into 3. 5. 3 produces
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i . 6r
8" -o -o

r 0
r rr

(3. 5. 4)

Expressing Equation 3. 5.4 in terms of the current and epoch state

deviation vectors yields

Ax] Al
T T

a = I i -e )1 ^-eA8 = 6x - 1

L ~~~~0

(3. 5. 5)

The estimate of the current state deviation vector

from measurement data by

6x is determined

6x =

6r

8v

= w6q (3. 5. 6)

I 

Extrapolation of the epoch state deviation vector to the current time

is accomplished by use of the state transition matrix according to

6ix = 4(t, to) _x 0 (3.5

where 6_x is determined from measurement data by-o

6x Wo 6q (3.5.

Making these substitutions in Equation 3. 5. 5 and factoring out

WO 6 q results in the following Equation for the total change in the

true anomoly difference:
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3. 7 Statistical Equations for Error Using the Epoch Formulation

of the Navigational Problem

When the epoch formulation is used rather than the conventional

formulation of the navigational problem, error is introduced because

of the assumption that allows for the analytical calculation of the

state transition matrix as opposed to integrating a differential equation.

The statistical equations for this error are developed here. Let abe

denote the conic state transition matrix calculated for the epoch

state filter. The current estimate of the state deviation vector for

this filter is given by

6Ox = 06q (3. 7.1)

where

E'b
_= - -(3. 7. 2)

a

and the estimate of the epoch state deviation vector is given by

6x o q (3. 7. 3)

where

E 'b
o -o
ao (3. 7. 4)a

The estimate of the current state deviation vector for the epoch state

filter given in terms of epoch quantities is

57



6x = c 6xo = Pco 62 (3.7.5)

Let the error vector, e
d

, incurred using the epoch formulation be the

difference between the current state deviation vector of the conventional

filter and that of the epoch state filter. This error is given by

e d : Z w6-wo 6o (3.7.6)

Factoring out 614 and substituting equations 3. 7. 2 and 3. 7. 4 for

w and o
o

respectively yields

ed = [E'b - tE ' b] 6 (3. 7. 7)
a - o

Substituting for b in terms of b where

Tb =D b (3. 7. 8)
-o

and factoring out b results in

ed = [E'- Eo' DT] b q (3. 7. 9)ed a -

The error covariance matrix, Ed, introduced by using the epoch as

opposed to the conventional formulation of the navigational problem is

T
Ed = eed (3. 7. 10)d -d -
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[E' - E ' q5T ] b 5q2 T [ E t - E ' 
T

] (3 7. 11)
Ed 2a

The total error vector, et, the epoch solution of the navigational

problem is the error inherent in the exact solution of the navigational

problem, en, plus the error incurred using the epoch formulation,

e d . That is,

e t = e + e d (3. 7.12)-t -n -d

Solving for the total error covariance noting that e and e
d

are-n d

uncorrelated yields

ete
t

= e e + 2 e ed + e edd (3. 7. 13)-t f -- n -n-d -d -

-e en + ed ed (3. 7. 4)

Since the first term on the right hand side of equation 3. 7. 14 is E n,

the error covariance matrix inherent in the exact solution of the

navigational problem, and the second term on the right is just E
d

,

then the total error covariance matrix, Et, is given by

Et = E
n

+ Ed (3. 7. 15)

Thus, the total error in the epoch solution of the navigational problem

is the sum of the error inherent in the exact solution plus the error
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introduced by using the epoch as opposed to the conventional or

exact formulation of the navigational problem.

The percentage of error introduced in the solution to the navi-

gational problem by using the epoch state filter rather than the conven-

tional state filter is obtained by comparing the estimated state vectors

for both filters with the rms error in the estimate. For a particular

solution, the percentage of error is given by the following:

% error = lapproximate solution - exact solution (3. 7. 16)
exact solution

The magnitude of the error between the position vector determined

by the epoch state filter and the position vector determined by the

Apollo navigation filter is given by -rESF - rCSF!. A measure

of the error in the position estimate of the exact or conventional

solution to the navigational problem is given by the rms estimated

position error. The percentage of actual error in the position

estimate introduced by using the epoch rather than the conventional

state filter is given by

ESF -rTRUE )
-

CSF rTRUE)!o actual error in position estimate 

(rms position error)CSF

(3. 7. 17)

Similarly, the percentage of error in the velocity estimate of the

epoch state filter as compared with the conventional navigation filter

is determined by
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% actual error in velocity estimate = I (ESF -TRUE ) -CSF -VTRUE) 

(rms velocity error)CSF

(3. 7. 18)

When the percentage errors given by equations 3. 7. 17 and 3. 7. 18

are small, the ESF may be used in place of the CSF.
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CHAPTER IV

COMPUTER SIMULATION RESULTS

4. 1 Simulation Data

The purpose for computer simulating the ESF was to determine

the error in this filtering technique as compared with both the true

state and the error in the conventional navigation filter. A circular

earth orbit with a 100 nautical mile altitude and a disturbing accelera-

tion due to the J2 term of the earth's gravitational potential was

chosen for study. As a further demonstration of the characteristics

of this filter, a circular orbit of radius equal to twice the equatorial

radius of the earth was also studied. Finally, the ESF was simulated

for the 100 nautical mile orbit with disturbing acceleration due to

10J2 to study the effects of larger disturbing accelerations.

Measurement data was incorporated at intervals of 10 around

the orbit for 80 measurements, thus testing the filter for 8000 or

more than two revolutions. The measurement vector b was alternately

chosen to be a unit vector in the x, y, and z directions respectively

for sets of three measurements. This was done so as not to bias the

problem in any one direction. The error in the measurement, ,, was

produced by a random number generator with a variance c2 of 106 m 

The initial covariance matrix was chosen to be diagonal with an

rms position error or 8. 84 x 102m and an rms velocity error of 8. 65

m/sec. A diagonal matrix was used so as not to bias the estimation

62

C_



problem, although for this simulation the initial covariance matrix is not

critical provided, however, that it is large enough. The covariance matrix

is gradually reduced by measurement incorporation regardless of its

initial quantity.

For both the ESF and the CSF, maximum likelihood filtering

techniques are employed. No approximations are made to extrapolate

the error covariance matrix for the CSF as were made for the ESF so it

might seem that the CSF is more accurate. However the CSF has extra-

polation errors due to the equation E = 4 E ' TD. Since the ESF is an

approximation to the CSF, a comparison of the performance of these

filters was made. The results of this study are given for one Monte Carlo

run rather than the average of many computer runs.

4. 2 Integration Techniques

The integration techniques for both filters were compared on the

IBM 360 model 75 computer. For the integration scheme of the ESF,

epoch state variables are used to integrate the variational equations

whereas for the CSF the current state variables are used. Several

runs of the integration techniques for both filters were made with

various integration step sizes. The results were compared with an

exact solution of the equations of motion. This exact solution was

obtained for a disturbing acceleration of (-p/20)(r /r 3 ) so that the

equation of motion reduced to the following two-body equation:

r + 21 0 (4. 2. 1)
r

Solution to this equation was obtained analytically.
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Both filters were run for various integration step sizes. The

error in significant figures between the states for both integration

schemes and the exact state of the spacecraft was noted after one

revolution for different integration step sizes. Also noted was the

computer run time for both filters. Figure 4. 1 illustrates the

time, in seconds, for the computer runs of the integration techniques

used in both filters with different integration step sizes for one revo-

lution. From this figure it is seen that on the IBM 360 computer

the integration scheme used in the ESF takes longer to run than that

of the CSF for the same step size. However, reference to Figure 4. 2

shows that the integration technique used in the ESF is more accurate

for the same step size than that of the CSF. After one revolution,

a 5 significant figure error in the estimate of the state as compared

with the 12 significant figures of the solution was the accuracy chosen

for the simulation. For this accuracy the errors in the Encke integra-

tion scheme did not degrade the solution and rectification was not

required.

An error of 5 significant figures implied a 10 integration step

size for the CSF and a 50 step size for the ESF as seen in Figure 4. 2.

When the step size was eliminated as a parameter from Figures 4. 1

and 4. 2 a plot of computer run time verses the error in the integration

technique for both filters was made (Figure 4. 3). The significance

of this last plot is that when simulated on the IBM 360- 75 computer

the integration techniques of ESF takes longer to run for

the same integration stap size than its counterpart, however,

it is more accurate. It was originally thought that
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the integration scheme for the ESF would be less accurate and more

time consuming than that of the CSF but this is not the case. In any

event, both integration schemes could be used for either filter.

4. 3 Measurement Incorporation for the Simulation

Actual measurement data, 6q, is incorporated by the filter to

improve the estimate of the state. This data consists of the true

T
measurement value given by b 6 TXTRUE plus an error in the measure-

ment, o, and is given in terms of its constituents as

T
6q = b 6 + (4. 3. 1)-TRUE

For the CSF, the estimated and true position are determined by Encke's

Method wherer = rOS
C

+ 6 andrTRUE r TRUE' The

position error vector is given by r - rTRUE or 6 - TRUE' Similarly,

the true velocity error v - vTRUE is given by v - VTRUE so that the

state deviation vector for the CSF is determined from

6O = w (6q - bT 6x' ) (4.3.2)

or

6_=: l - ] -| (4. 3. 3)
_V ~ _VTRUE

For the ESF, the epoch state deviation vector is given by
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8x = 0 (8q - b X) (4. 3 4)
-0 -o -o -o

or

, = 2 0q-_o b | _ TRkUE 1-b(4.3.5)-L
Measurement TRUE

4.4 Measurement Incorporation for Zero Disturbing Acceleration

In order to demonstrate that the errors in the simulation study

of the ESF are indeed the errors introduced because of measurement

incorporation, the ESF was tested for a 100 nautical mile circular

earth orbit with zero disturbing acceleration. The results of this

simulation are given in Figures 4. 4 to 4. 11. For this case, the ESF

and the exact solution to the navigational problem, the CSF, are

essentially the same. The statement ~ = 0 between measurements

is not an approximation for the ESF with zero disturbing acceleration

since the motion of the spacecraft in its orbit is two-body.

In Figure 4.4 the magnitude of the difference between the esti-

mated position of the ESF and the CSF, r1 ESF - }CSF, is plotted

for 80 measurement intervals. This graph shows,that both filters

are close for the case of zero disturbing acceleration except for a

slight random error which grows with time. At the eightieth mea-

surement this error is only 1.46 meters. Figure 4.5 illustrates the

magnitude of the difference between the estimated velocity of the

ESF and the CSF, ivESF - CSFI for 80 measurement intervals.
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Figure 4. 6 illustrates the fact that for zero disturbing acceleration

both filters are comparable except for a small error. This random

error has a maximum value of 1. 44 meters for the case of Figure 4. 6

and value of .55 meters after the eightieth measurement. Similarly,

reference to Figure 4. 7, a plot of the difference between the actual

velocity error of both the ESF and the CSF I ESF - VTRUEI -

IVCSF - VTRUEI for 80 measurement intervals, shows that both filters

are comparable except for a slight random error which is . 00182

misec at maximum. This is also the value of error after the eightieth

measurement. To find the error in the ES'F that is in excess of the

error in the CSF at the eightieth measurement, the difference between

the actual position vectors of the ESF and the CSF, . 55 meters,

is. compared with the expected rms position error of the exact or CSF

solution, 523 meters as seen in Figure 4. 8. The percentage of error

in the position estimate using the epoch formulation of the navigational

problem instead of the conventional formulation is approximately

, 11% for the case of zero disturbing acceleration. Likewise, the

error between the actual velocity errors of the ESF and the CSF,

.00182 m/sec, is compared with the expected velocity error of the

CSF solution, .55 m/sec as seen in Figure 4. 9. The result is that

a . 33% error exists in the velocity estimate of the epoch state filter

in excess of the error in the velocity estimate of the CSF.

In Figures 4. 10 and 4. 11 the expected rms position error and the

rms velocity error at the epoch are given for the case of a 100 nautical

mile circular earth orbit with zero disturbing acceleration. The rms

position error starts out at its initial value, 8. 84 x 10 meters, and
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then decreases steadily to a value of 445 meters after 80 measurement

intervals. Similarly, the rms velocity error decreases from its

initial value of 8. 65 m/sec to . 52 m sec with measurement incorpora-

tion. Reference to Figures 4. 10 and 4. 11 shows that the rms velocity

error at the epoch decreases faster with measurement incroporation

than the rms position error of the epoch. The fact that these last

two graphs are for the epoch covariance matrix is made clear by

noting that between measurement intervals, the rms position errors

are constant. This is in agreement with the fact that EO = 0 between

measurements.

Between measurements, the errors in the current estimate of

the state of the spacecraft grow with time. These errors are then

reduced with the incorporation of new data as is seen in Figures 4. 8

and 4. 9. However, the errors in the estimate of the epoch state

can only be reduced. They do not grow with time but are constant

within measurement intervals, and the incorporation of new information

acts to only decrease the error in the estimate of the epoch state

(Figures 4. 10 and 4.11)

4. 5 Disturbing Acceleration Due to J2 Term

The ESF was tested for a 100 nautical mile circular earth orbit

with a disturbing acceleration due to the J2 term. The results of

this test were compared with similar results for the CSF. For this

case, the magnitude of the estimated position deviation vector,

! 8 I, is given for both filters after 80 measurement intervals in

68



Figure 4. 12. Reference to this figure shows that the magnitude of

the position deviation is approximately the same for the ESF and

the CSF until the thirty-seventh measurement and after that differs

only slightly. The same is true of the velocity deviation 16vl

(Figure 4. 13). The differences exhibited in these figures may be

attributed to the random type of measurement data for the simulation.

When the filter has been operating for a while and reducing the error

in the estimate with measurement incorporation, the estimate of the

state is more accurate. Since the estimate of the state is more

reliable, the required state deviation is lessened. This is seen

in Figures 4. 12 and 4. 13.

As time increases, the difference between the position deviation

vectors for the ESF and the CSF grows (Figure 4. 14) and is due to

the difference between the filter gains. However, this difference is

small,having a maximum value of about 48 meters and a value of

about 2 meters at the eightieth measurement interval. Similarly,

the difference between the velocity deviation vectors of the ESF and

the CSF (Figure 4. 15) has a maximum value of about . 06 m/sec

and a value of about .003 m/sec after the eightieth measurement

interval.

Figures 4. 12 to 4. 15 are plots of the state deviation vector and

illustrate the effect of each measurement incorporation on the filter.

These figures show what is to be added to the estimate of the state

because of the incorporation of new data. The accumulated effect

of measurement incorporation on the ESF as compared with the

CSF is given in Figures 4. 16 and 4. 17 for the estimated position
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and velocity respectively. Again, the irregularity in these plots

is due to the random type of measurement data. The significance

of Figure 4. 16 is that the estimated position difference between the

ESF and the CSF remains nearly zero for ten measurements and then

grows to about 40 meters after the eightieth measurement. Similarly,

the estimated velocity difference (Figure 4. 17) remains nearly zero

for ten measurements and grows to .065 m/sec after the eightieth

measurement.

The errors given in Figures 4. 16 and 4. 17 are for the difference

between the estimates of the ESF and the CSF with no indication of

the true state. At times, the estimate of the state as given by the

epoch formulation of the navigational problem may be more correctly

aligned with the true state than that of the CSF. This is because the

ESF does not have the extrapolation errors of the CSF due to the

T
equation E = D Eo (Q . Also, the approximation that Eo = 

between measurements for the ESF is nearly exact.

A more significant test of the epoch formulation of the navigational

problem is obtained by comparing the actual errors for the ESF and

the CSF. The actual error in the ESF is the difference between the

estimated state for this filter and the true state, IrESF - rTRUEI'

and is given in Figure 4. 18. This is easily obtained since for the

simulation the true orbit of the spacecraft is known. The actual

error in the position estimate of the ESF has a maximum value of

about 1800 meters and reduces to 523 meters after eightly measure-

ment incorporations. The same is true for the actual position error

of the CSF, IrCSF - rTRUE|' as seen in Figure 4. 19. When the
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results of Figure 4. 19 are subtracted from those of Figure 4. 18, the

difference between the actual position error of the ESF and the CSF

results (Figure 4. 20). This last graph is probably the most signifi-

cant of the simulation. What it implies is that both filters are

comparable. When the actual error difference is positive, the ESF

has more error in the estimate of the position vector and the CSF

is the more correct. Conversely, when the actual error difference

is negative the ESF is more correct. After the eightieth measurement,

the actual error difference has a magnitude of 16 meters. As compared

with the corresponding rms estimated pos ition error which has a

value of 523 meters as seen in Figure 4. 21, the percentage of error

introduced by using the epoch formulation of the navigational problem

is approximately 3. 1%. This is the percentage of error due to the

ESF in excess of the error inherent in the conventional solution to

the navigational problem and is small for all practical purposes.

Figures 4. 22 and 4. 23 are graphs of the actual velocity error for the

ESF and the CSF respectively. As seen in these figures the actual

error in the estimation of the velocity has a maximum value of

about 3 m/sec and is reduced to about . 2 m/sec after the eightieth

measurement. More significantly the difference between Figures

4. 22 and 4. 23 as given by Figure 4. 24 shows again that both filters

are comparable. The ESF is more accurate than the CSF and vice

versa. Initially, the actual error difference in the velocity estimates

for both filters has a value of zero. After the eightieth measurement

this error increases somewhat randomly to a magnitude of .048 m/sec.

When this last value is compared with the corresponding rms velocity

error which the percentage of error using the ESF to estimate the
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velocity vector is approximately 8. 7%. Again for all practical purposes

this error is small.

One of the reasons that the ESF is an accurate estimator of the

current state is evidenced by the change in the epoch state from its

true initial value for eighty measurement intervals. In Figure 4. 26

the epoch position change, Iro (t) - fo(to) I, is seen to be 390 meters

at maximum and 170 meters after the eightieth measurement. The

maximum value, Ivo (t) - (to)
[
, is 2. 5 m/sec and the change after

the eightieth measurement is .55 m/sec as seen in Figure 4.27.

Both the true epoch position and velocity change are small enough

to insure the accuracy of this formulation of the navigational problem.

To insure that the errors in the simulation were not due to the

integration technique, the osculating orbit was rectified every 180

for the 100 nautical mile circular earth orbit with a disturbing ac-

celeration due to the J2 term. As illustrated in Figures 4. 28 to 4. 31,

rectification produced no observable change in the estimate of the

state since the errors in the integration technique are small enough

so as not to degrade the solution.

Results of another Monte Carlo run for the 100 nautical mile

circular earth orbit with a disturbing acceleration due to the J2

term are given in Figures 4. 32 to 4. 47. These graphs especially

Figures 4. 44 and 4. 47 confirm the result of the previous Monte

Carlo run, in particular that the ESF and the CSF are comparable

for this orbit and disturbing acceleration.

The error in the approximation that ~ = 0 between measurements

for the ESF decreases with the disturbing acceleration which is a
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function of 1 /r 4 . Because of this, the accuracy of the filter increases

as the spacecraft travels farther into space away from the disturbing

influence of the earth. To illustrate this characteristic of the filter,

the ESF was simulated for a circular earth orbit with a radius equal

to twice the equatorial radius of the earth. The results of this

simulation are given in Figures 4. 48 to 4. 53.

As seen in Figure 4. 48, the difference between the position esti-

mates of the ESF and the CSF is considerably less for this orbit

than for the 100 nautical mile orbit. After the eightieth measurement,

the position difference for this larger orbit has a value of 11 meters

as compared with 40 meters for the 100 nautical mile orbit. The

difference between the actual position error of both filters (Figure

4. 49) varies randomly having a magnitude of only 4. 2 meters after

the eightieth measurement as compared with 16 meters for the 100

nautical mile orbit. The rms position error for the circular orbit

of radius r = 2 rE (Figure 4. 50) has a value of 500 meters after the

eightieth measurement. Comparing the difference between the actual

position errors with this value results in a . 84% error. This is the

extra percentage of error introduced by using the ESF to extimate

the state of the spacecraft. A . 84% error is a considerable reduction

when compared with the 3. 4% error for the 100 nautical mile orbit.

After the eightieth measurement, the difference between the velocity

estimates of the ESF and CSF (Figure 4. 51) has a value of . 0048

m/sec for the orbit of radius r = 2 rE as compared with .048 m/sec

for the 100 nautical mile orbit. The difference between the actual

velocity errors (Figure 4. 52) varies randomly having a magnitude of
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. 0048 m/sec for the 100 mile orbit. When the difference between

the actual velocity errors after the eightieth measurement is compared

with the corresponding rms velocity error which is . 2 m/sec as seen

in Figure 4. 53, the percentage of error introduced by using the ESF

for the circular earth orbit of radius r = 2 r
E

is 2. 4%. This percentage

of error is considerably less than the 8% error in the velocity estimate

for the 100 nautical mile orbit. These results demonstrate that the

accuracy of the ESF increases for higher orbits becuase the relative

accuracy of the approximations increase.

4. 6 Disturbing Acceleration Due to 10 J2

It would be interesting to apply the ESF to the re-entry navigational

problem. However, for this problem the spacecraft is subject to large

values of disturbing acceleration. To see if the epoch formulation

of the navigation problem works properly for disturbing accelerations

due to terms larger than J2' the ESF was simulated for a 100 nautical

mile circular earth orbit with a disturbing acceleration due to 10 J 2 .

Results of this simulation are presented in Figures 4. 54 to 4. 69.

In the first of these graphs, Figure 4. 54, the magnitude of the

position deviation for the ESF and CSF is seen to be the same for

both filters until the eighth measurement. Although the difference

there if only slight, it becomes more pronounced as time goes on

and the error in the approximation for the ESF increases. This same

result is seen for the magnitude of the velocity deviation (Figure

4. 55). The difference between the position deviation for the ESF and

CSF is given in Figure 4. 56. In this case, 1 6 ESF - 5CSF ! has a
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maximum value of 490 meters as compared with 48 meters for the

case of a disturbing acceleration due to J2' and a value of 30 meters

after the eightieth measurement as compared with 2 meters for the

J2 case. The velocity deviation (Figure 4.57) has a maximum value

of .58 m/sec for the 10 J2 case as compared with .06 m/sec for the

J2 case and a value of .50 m/sec after the eightieth measurement

for the 10 J2 case as compared with . 003 m/sec for the J2 case.

This considerable difference is due to the error in the simplifications

of the ESF which is large for the case of a greater disturbing ac-

celeration. The difference becomes more pronounced as time goes

on and the errors of the filter diverge.

Similarly, the difference between the position estimates for

the ESF and the CSF (Figure 4. 58) has a maximum value of 400

meters for the 10 J2 case as compared with 43 meters for the J2

case and a value after the eightieth measurement of 275 meters

for the 10 J2 case as compared with 40 meters for the J2 case.

The difference between the velocity estimates, !IESF - --VcsF

(Figure 4. 59) has a maximum value of . 51 m/sec for the 10 J2

case as compared with .065 m/sec for J2 case and a value of . 35

m/sec after the eightieth measurement as compared with .050 m/sec

for the J2 case.

The actual error for the ESF with a disturbing acceleration due

to 10 J2 as seen in Figure 4. 60 has a maximum value of about 1770

meters and a value of 470 meters after the eightieth measurement.

The actual error for the CSF (Figure 4. 61) has a maximum value of

about 1770 meters and a value of 650 meters after the eightieth

measurement.
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Again, the difference between the actual errors for both the

ESF and the CSF varies randomly (Figure 4. 62) implying that the

ESF and the CSF are comparable. That is, the ESF is more accurate

in estimating the spacecraft's position vector just as often as the CSF.

The difference here is that after the eightieth measurement, the

difference between the actual position errors has a value of about 180

meters. When this is compared with 500 meters for the rms position

error (Figure 4. 63), a 36% error is determined. This is considerably

larger than the 3. 2% error for the case of a disturbing acceleration

due to the simple J 2 term. However, not only is the ESF working

for the case of a larger disturbing acceleration but it is comparable

to the CSF in estimating the position of the spacecraft.

The same is true for the percentage of error in the velocity

estimate for the ESF. Although there is a 60% error in the velocity

estimate of the ESF, the ESF and the CSF are comparable as seen

in Figure 4. 66.

One of the reasons that the ESF approximately works for the

case of a disturbing acceleration due to 10 J2 is evidenced by refer-

ence to Figures 4. 68 and 4. 69. The magnitude of the difference

between the estimated and true epoch position vectors Io(t) - ro(to)i

has a maximum value of 400 meters and a value of 250 meters

after the eightieth measurement. Reference to Figure 4.69 shows

that the magnitude of the difference between the estimated and true

epoch velocity vectors has a maximum value of 2. 5 m/sec and a

value of . 55 m/sec after the eightieth measurement.
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The ESF was simulated for the case of a 100 nautical mile orbit

with a disturbing acceleration due to 100 J
2
. However, for this case,

the ESF worked properly for a little over a fourth of a revolution.

After that the errors in the approximation that D = 0 for the ESF

significantly degraded the solution and the ESF did not work.

Included in this thesis are the computer programs written in the

MAC language for the simulation of the ESF and the CSF.

4. 7 Computation Time on AGC

The relative execution time for the various operations differs from

computer to computer. The run time solutions given previously

for the integration techniques of both filters on the IBM 360 computer

are not necessarily the same for the Apollo computer. To compare

the computation time for the epoch and the conventional state filters

on a spacecraft computer such as the Apollo Guidance Computer,

(AGC) the explicit computational algorithms for both solutions to the

navigational problem are given here. However, only an approximation

to the actual computation time for each of these solutions is deter-

mined according to the total number of various arithmetic and branch-

ing operations. Using the information presented here, a comparison

of both filters for computers other than the AGC may be easily made.

The equations used in the computer subroutines for the ESF and

the CSF were described in previous sections of this thesis. In the

following paragraphs, the sequence of computations for both solutions

of one navigation cycle are given precisely:
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EPOCH STATE FILTER

Input

b: measurement vector

6q: measurement data

1.: initial epoch time

r: initial epoch position--o

v initial epoch velocity
-O

0: initial true anomaly difference

E o: initial epoch covariance matrix

JI: earth gravitational constant

, 2: measurement variance

J2: * disturbing acceleration term

Initialization of Loop

r
=-o

i =i

-r -r

,/C -= SQRT (p)

i = 1

Iterative Loop

1) i i xi
0 -_z -r

2) i = i xi
-- 0 -z -r

78



3 ·E 6 r ) -I 6e *r3) Ae = 6 r)- (i 6r-(
ro -

4) e = + Ae

5) r = r + 8_r

6) Set t = 1

7) Set k = 0

8) Call DIFEQ to integrate 8, r
o
, v ° with the following iterative loop

8a) Cos 8 = cos (8)

8b) Sin 8 = sin (8)

8c) ro = Ir

& d) vo = IVIol

8e) = r- vo

2
2 o

8f) a =
r /o

2 28g) p = 2 r
-

ro 

8h) h = Jup

8i) r= P
1 + (P _ 1) cos 8- h° sin e

r /r
0

ra

P

8j) U = -°sin (1- Coso )

U2e) F = 1-
r
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8m) Ft =

8n) G =

80) Gt =

rr
o

11 (rO U

U
2

1-
r

+ c0 U2 )

8 p) r = Fr + Gv0

8q) r = I|r

r
8r) i-r

r

8s) cos 0 = ir i-r -z

8t) v = Ft r + Gt v

8u) h = rxv

8v) a = -1. 5 J2
~d .r 2

(-) [{1- 5(cos 0) } r + 2 cos 0 
]

r

8w) =
dt

dr
8x) -o

dt

dv
8y) -o

dt

h + 1 [
r 2 h 2

1

[ (vo - V)]

sin O h x r + h (1 - cos 8)rl] ad

r) v T v rT ad -

(v - v) a +Fa-o -- d -d

8z) Set k = k + 1

8Q) If k < 4, Go to 8a

9) Set t4 = It + 1

10) If t < 3, Go to 8a
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1
11) 1/ = 1

12) r = r ol

13) Solve Kepler's equation for x

14) U3 = (1/cI) [x- U 1 ]

15) /'j(t- T) = r
o

U1 + 
o U 2 + U 3

2
16) U 4 = (1/IQ) [x - U2

2 U]
3

17) U5 = (1/) [6 - U 3 ]
6

18) c = 1 [3
A/ i/

u5 - x U4 - u 2 FJ (t- r)]

19) R(t) = 1 {[U2 (r- r
o ) + cv] v T_ [U 2 (v - vo)] roT + GI

19) R~tA

20) V(t) = [(U r) r (cr) v T ]

r
+[ ° (v -

Cz
v )] (v- vo)T+ G I-o 0 t

21) V -(to) = [ (U2 r)
r 0

rT + (cro) v T V ]+ [(v - v)T + FI-0 - -0 0 

22) RT- 1 = (RT)- 1

23) C(t) = R T-1 V T

a r
24)

r
-- o

a v
25) -

ro

= V (t)T

C (t) V(to) - R (t) 1

26) D (t, t0 ) =
O

V (to)T

C(t) V (t)T -0

81.
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27) b
-o

= T b

28) a = b (E+ o °o -0 0-0

29) WE b2 9) a o 
0

30) E = E - b T EO O .-- O -- 0 O

31) 6o = o 6q

32) Divide 86 o into ro and 8vo componeo -- O

ie, 6ro = 6 xo ... , 86 6 X3

33) 6x = 5 8:

34) Divide 6x into Art and 5v components

35) Set i = i + 1

36) Go to 1

rnts

. . .

CURRENT STATE FILTER

measurement vector

measurement data

initial time

initial position

initial velocity

initial covariance matrix

82

Input

b:

8 :

T:

r :
-o

v 

E(to):



A1: earth gravitational constant

2: measurement variance
af

J2: disturbing acceleration term

Initialization of Loop

r = r

v- Iv IVo -01
2

V2 o
a =-

r0 A

1

of

1
ro - (r V)

Ju= SQRT (M)

Set upper left-hand 3 x 3 corner and lower right-hand 3 x 3 corner

elements of F equal to zero

Set i = 1

Iterative Loop:

1) Set off diagonal terms of (q equal to zero

2) Set diagonal terms of <Q equal to one

3) 8 = 6+ 6r

4) V= v + 6v

5) set C = 1
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6) Set k = 0

7) Call DIFEQ to integrate 6, v with the following iterative loop

7a) Determine x by solving Kepler's equation

7b) U 2 (x; O) = (1/a) [ 1 - Uo(x; a)]

7c) r r= 0 U + c0 U1 + U2

U 2
7d) F = 1-

r

1
7e) G (r U1 + O U2)

7f) F t -U
rr 0

U 2
7g) Gt 

r

7h) r = F r + Gv
--OSC --o -o

7i) v = F r + G v
--osc t -o t -o

7j) ros = Irosc

7k) r = ro + 

71) r = Ir

r
7m) i - --r r

7n) cos = i i
-- r -z

(6 - 2 r) · 6
70o) q =

r2
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3 + 3Q+ q
7 p) f (q) = q

1 + (1 + q)

7q) ad -1. 5 (cos (0) llr + 2 cos r
_

7r) G(t) = [(3 r)rT - 2 I]
r 5

7s) Set lower left-hand 3 x 3 corner elements of F equal to their

respective elements of G(t) i. e. F18 = G o , F19 = G
1

...

d6
7t) = v

dt

du
7u) 3 (f (q)r + 6) + a d

osc

7v) = F
dt

7w) Set k = k + 1

7x) If k < 4, Go to 7a

8) Set 6 = , + 1

9) If t < 11, Go to 7a

10) E = E' DT

11) a = b (E' b) + 2

12) t, 1 E' b
-- a

13) E = E'- wbT E'

14) 8 x = , 6q

15) Divide 6x into 6 r and 8v components i. e.,

6i 0 = 6i o ... , 6%o = 63 ...
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16) Set i = i + 1

17) Go to 1

Iterative Solution of Kepler's Equation for x

KE1 Set j = 0

KE2 xo= J/-(t- ) 1I - 2o
r 2r 2

o

IJr- (t- 7) +

0

1 [3 a
6r 4·

0

- r 0 (1- r o)]

[,f-(t - )] 2 + ..

KE3 UO (Xn; )

}
CUXn2 (Xn 2) 2= [ 1 - + 4
2! 4!

2 ( Xn2)2
r,_an +

KE4 UI (xn;) = Xn[ 1 
3! 5!

KE5 U 3 (xn; ) =

KE6 ^/- (t
n

- )

(1/ )[xn
- U1(X; ;o)]

= r U (xn; ,) + oo U2 (xn; c) + U 3 (Xn; or)

KE7 rn = r Uo(xn; ) + Co U1(xn; c) + U2 (x
n ; a)

KE8 Xn+ 1

KE9

= X
n

x
n

,ISA t - 14 tn - t
r n

Xn+ 1

KElO j = j + 1

KE11 If j < 4, Go to KE3

These equations are given in Reference 3
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DIFEQ (Common to both techniques)

Given the differential equation:

dy/dt = f(t, y)

where y is the dependent variable, t is the independent variable and

At is the increment, the value of y at t = t + At can be obtained from

the following process:

DQ1 Set y = yo and t = to (i. e., their initial values)

DQ2 Set At = h

DQ3 Evaluate dy/dt = f (t o , Yo)

DQ4 Evaluate k 1 = hf(t, yO)

DQ5 Set t = to + (h/2) and y = yo + (k1/2)

DQ6 Evaluate dy/dt = f(to + (h/2), yo + (k 1 /2))

DQ7 Evaluate k
2

= hf(to + (h/2), yo + (k1/2))

DQ8 Set y = yo + (k 2 /2)

DQ9 Evaluate dy/dt = f (xo + (h/2), to + (k 2 /2))

DQ10 Evaluate k
3

= h f(t o + (h/2), Yo + (k 2 /2))

DQ11 Set t = t o + h and y = yo + k 3

DQ12 Evaluate dy/dt = f (t o + h, yo + k3 )

DQ13 Evaluate k 4 = hf(to + h, y + k 3 )

DQ14 Evaluate k = (k 1 +2k 2 +2k3 + k4)/6

DQ15 Set y = y + k
0
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y at this point contains the desired result

These equations are given in Reference 9.

Since the time consumed for the input and initialization of

the loop is a small part of the total computation time for both algorithms,

these parts are ignored in the following calculations. Table I contains

a list of some operations common to both filter algorithms and the

number of functions involved in these operations. The number of

various arithmetic and branching operations required by each line

of the iteration loops for the ESF and the CSF algorithms are given

in Tables II and III. The parameter "i" represents the number of

iterations performed over the whole iterative loop. Parameters

"t" and "k" represent iterations performed over the extrapolation

of the state. The maximum value of "t" is 2 for the ESF and 10 for

the CSF and the maximum "value of "k" is 4 for both filters. "j"

represents iterations performed over the solution to Kepler's

equation and has a maximum value of 4 for both filters.

It is pointed out that in formulating the algorithms, little

attempt has been made to organize the computation so as to minimize

the overall execution time on the AGC. Tables II and III and sub-

sequent tables derived from these, represent a reasonable count of

the number of various operations required to execute the algorithms

for both filters. In Tables II and III computation has been divided

into three sections: (A) extrapolation of the state, (B) extrapolation

of the covariance matrix, and (C) update of the estimates. The

computation time for the first and third of these sections should be
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approximately the same for both filters. However, if the method of

extrapolating the state for the ESF is too time consuming, then

this method can be replaced by that used in the CSF with a slight

modification. The big savings for the ESF comes in the extrapolation

of the covariance matrix. Isolation of the computation time for this

section emphasizes this savings.

The total number of various arithmetic and branching operations

required for each of the algorithmic divisions described previously

i. e., (A) extrapolation of the state, (B) extrapolation of the covariance

matrix, and (C) update of the estimate, are presented in Tables IV

and V for the ESF and the CSF respectively, after one complete

execution.

The relative time required for a single execution of each of

these operations on the AGC execution of each of these operations on

the AGC is summarixed in Table VI. The information is adopted

from the Users Guide to the Block II AGC/LGC Interpreter,

Reference 11.

The total number of "add times" required by one complete

execution of the ESF and CSF algorithms is given in Table VII in

"i" iterations. Finally a rough estimate of the overall computation

time for the AGC required by the ESF and CSF algorithms is given

in Table VIII for the algorithmic divisions previously described

and their total. These tables give the results of converting the infor-

mation for "our case" in Tables IV and V into actual computation

time in seconds. The results given in Table VIII were expected,
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and in particular those of Section B. Even if the integration scheme

for the ESF, Section A, were more time consuming than that of the

CSF, the latter method could be substituted in its place. However,

there is a considerable savings in the execution time for the ESF

because of the assumption that c = 0 between measurements. This

savings is evidenced by Section B of Table VIII. The assumption

allows for t to be calculated analytically rather than by integrating

a differential equation. When ·c is calculated by integrating a differen-

tial equation using the MAC subroutine DIFEQ , the integration is

carried out in four steps to yield {,for 1° increments. All of the

equations used in determining the differential equation for 6 are

sequenced on four times to determine for the 1° increment. To

calculate c at 100 measurement intervals, the equations for 4 are

cycled forty times. Using the assumption E = 0 between measurements

for the ESF, D is calculated only once for the 10 ° measurement

intervals and need not be computed along the path.
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Operation

Addition

Subtraction

Multiplication

Divis ion

Square Root

Transcendental Function

If (Branch)

Initialize

Relative Execution Time

1

1

2

4

3

9

1

2

"Approximate "add - times" where one add-time = .66 milliseconds

TABLE VI

Relative Execution Time of Operations on the AGC
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TABLE VII

Total Number of "Add Times" Required by One Complete

Execution of the ESF and CSF Algorithms in "i" Iterations

107

A B C Total

ESF 4, 410i 1, 680i 199i 6, 289i

CSF 19, 800i 40, 812i 113i 60, 725i



TABLE VIII

Estimate of Total Computation Time for the AGC Required by One

Complete Execution of the ESF and CSF Algorithms in "i" Iterations

108

A(sec) B(sec) C(sec) Total

ESF 2. 91i 1. Ili . 13i 4.15i

CSF 13. li 26. 9i . li 40. li
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CHAPTER V

CONCLUSIONS

From the computer simulation results of Chapter IV it is seen

that the epoch state filter produces the estimated state of the space-

craft with nearly the same accuracy as the current state filter, but

with a considerable savings in computational time. The inaccuracy

in the ESF, incurred because of the assumption that allows for the

analytical calculation of the state transition matrix, is small for a

100 nautical mile circular earth orbit with a disturbing acceleration

due to as much as 10 J 2 . At times in the orbit, the ESF is even

shown to be more accurate than the CSF.

Computer simulation results were for low earth orbits where

the effect of the disturbing acceleration due to the J2 term is greatest,

thus contributing to the largest possible inaccuracy for the ESF. This

inaccuracy decreases as the spacecraft's altitude increases away

from the influence of disturbing bodies. It was further demonstrated

that disturbing accelerations due to as much as 10 J2 were tolerable.

The fact that for a larger circular earth orbit with radius twice the

equatorial radius of the earth, the errors in the estimate of the

state of the spacecraft are decreased considerably is consistent

with this trend.

The savings in computation time for the ESF on the AGC is a

substantial improvement over the conventional solution to the
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navigational problem. This savings is due largely to the analytical

extrapolation of the state' transition matrix as opposed to the numerical

integration of a matrix differential equation. Also, the integration

technique for the ESF, which was thought to be more time consuming

than that of the CSF, proved to be comparable on an IBM 360 Model

75 computer and faster on the AGC.

The results of the study indicate that the epoch state filter is

an economical filter which may be used to estimate the same quantities

as the Apollo navigation filter.
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APPENDIX A

DIFFERENTIAL EQUATION FOR THE

EXTRAPOLATED COVARIANCE MATRIX

E'(tk) = (tk tk 1) E(tk_ 1) T(tk: tkl) (A. 1)

(tk, tkl 1) = F(tk) 4 (tk tk l)

T (t
k
, tk_ ) = ,T(t k, tk 1) F (tk)T

(A. 2)

(A. 3)

(A. 4)

Differentiating A. 1 with respect to time yields

I' (tk) = (tk, tkl) E(tkl) T (tk, tk-l)

+ ( t
k

, tkl) E(tk _ l) 'T(t tk tk 1)

Substituting Equations A. 2 and A. 3 in A. 4

i'(tk) = F(tk) [4(tk, tk 1) E(tk- ) QT (tk, tkl 1)] (A. 5)

+ [ (tk, tk ) E(tkl) DT(tk, tk l)] F(tk)T

Noticing that the terms in brackets are E'(tk) Equation A. 5 reduces to

E'(tk) = F(tk) E '(tk) + E'(tk) F(tk)T (A. 6)
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APPENDIX B

VARIATIONS OF THE

EPOCH FORMULATION

Rather than using [ as the independent variable and solving the

following differential equation

de = h + [ sin 8 h x r + h (1 - cos ) r] · _a
d

(B. 1)
dt r2 h2

The generalized anomoly, x, may be used instead. The differential

equation to be integrated is then

dx iv/w; 'yU3 (x; e )dx /+ '_ad (B. 2)
dt r

where U 3 (x; a ) is the transcendental function

x2 (1xx2)222
U (X; a!) = Xn (x1 _ O + . ..) _ ) (B. 3)

nn! (n+2) ! (n+4) !

and ce is obtained from the following equation

2
2 v
2 v (B. 4)
r

as given in References 1 and 2. Integrating Equation B. 2 for x eliminates

the need to solve Kepler's equation. This is also the case when e is

used as the independent variable since Kepler's equation can be solved
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for either x or e. The U functions used in solving Kepler's equation

can be expressed in terms of either x or e, i. e., U = U (x; a) or

U = U(e; a). Still another variational parameter which may be used

is the variable epoch time, to, and the equation to be integrated is

dt o 1
- = (c v + U

2
r · a d (B. 5)

dt -

where c is defined by

-c = 3U 5 - xU 4 - U 2 V-(t- to) (B.6)

where U2 , U4 , and U5 are transendental functions of order 2, 4, and 5

respectively and t is the current time. Use of the differential equation

for to necessitates solving Kepler's equation

A/Ai (t - to ) = ro U 1 (x; ca) + or U 2 (x; a') + U3 (x; a') (B. 7)

for x. In Equation B. 7, ao is given by

1
o= r ·v (B. 8)

-A/ - O --
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APPENDIX C

DERIVATION OF THE VARIATIONAL

EQUATIONS FOR - G, -F
t
. AND F

The equation for - G in terms of the U functions is given as

(C. 1)-G = r U + C U2

8X 112

Differentiating this equation according to the formal rules of differen-

tiation given in Section 3. 4 results in

-dG

dt

r dU 1 1

,J/g d t /d

dt

dt
U2

d U2
+ C 

,r, dt
(C. 2)

where the variational equations for the transcendental functions are

given by

dU 1 = 1 dcy
1= U ( d + R U

3
-d -

1
U

2
(C

(dt -dt 2 dt 2 dt

dU 2

dt 1( dt+dt
1 U dtc )
2 3 dt

1 2 do

2 dt

.3)

(C. 4)

and that of a by

dt -

dt

2 v a
AL

(C. 5)
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Substituting Equations C. 3 to C. 5 into Equation C. 2 and collecting

terms yields

1 U d
2 dt

) [- (r U - a U1 )]
0

- va
d

U
1tt W -4[1

a

rW -
(C. 6)

The first term in brackets is F and the second bracketed term is G.

Making these substitutions in Equation C. 6 results in the following

variational equation for - G

* a G- ro (dt
4r;

+ 1

2
dot 1 r ad U2

_ _ 

(C. 7)

Similarly, differentiating the equation for Ft where

yields

d Ft

dt

- Ft

IJI dU1

rr
O

dt

U,

r r

IJrA
rr

o

dr
0

U1-dt

dUl
Upon substituting Equation C. 3 for and C.

dt
5 for da and

dt

dro d t

dt dt
+ 1

2 Udt
1- (r + r

o
)

2
U2 _ U dU c

dt dt
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r o

,5FA
dG

dt
/d(dtAdat

dG =

dt

U 2

-- V
A

(C. 8)

(C. 9)

(C. 10)

U2 J+ 1 r · a d U2
A1



where

der _ 1 da = 1 r * a (C. 11)
dt d

Into Equation C. 9, the resulting equation is

dFt /
t = IU( d + 1 U3 d + 12 v. a d

dt rr dt 2 dt 1,

2 [ C( d + I U3 (r +r )v a
rr dt 2 dt

U1

r ad ] (C. 12)

Collecting terms and simplifying Equation C. 12 produces

dF
tr d t 1 U3 d )[ (r U + U) +

dt r 2 dt 2 dt r
o

+ U1U2 1 U 1a 2 1 a 1 2 1+ v' a v a v a
d

+
~rr° -d r 2 -- rrd ,g-

U 2
+ r a (C. 13)

rr 2 - drr

The second and fourth terms on the right-hand side of Equation C. 13

cancel and the term in brackets is Gt. Making these changes and col-

lecting related terms results in

185



dt d +1 U da') +d d G
dt r dt 2 dt t Jr r a d d

U 1 A/-

- v a d + r ad) (C. 14)
rr

o

where v ' ad has been added to and subtracted from the second term

in parantheses. Collecting terms within the second set of parentheses

results in- v · ad + (-F t _r ad + F v a d ) which is equal to (v - v)ad-d t - -d -d -o v -d'

Thus, the variational equation for -F
t is

d t
dFt _ ( d) +1 U(v3 d-ov a t (d (C 15)

dt r 2 dt 2 dt 2- - -

Finally, the equation for F is

U
F = 1 2 (C. 16)

r
o

Differentiating this equation as was done previously for - G and Ft

yields

dF 1 dU 2 U2 dr
dF 1 2 + 2 (C. 17)

dt r dt r dt
o o

dU 2 dr da d a
Substituting for , and- with equations C. 4, C. 10,

dt dt dt dt
C. 5, and C. 11 respectively results in
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dF = 2 _1 d +. +, ! U + ] U _ 2 v ad
dt r dt 2 dt r -o

U
2

2 U 2 U 1 U 2 r ad
+- 2 v a d +- v' a 2 (C. 18)

2 -d d 2
O . 0 0

Cancelling the second and fourth terms on the right-hand side of

Equation C. 18, replacing the term in brackets by ./ji G, and collect-

ing related terms yields

dF 1 'd; 1 da rU 2 (Ul- = _ ( +-U_ - 4G- - r. ad
dt r

°
dt 2 dt 'ro r0r

U
2- v * a + v. a -v a) (C. 19)r - -d - -d - d

where v · a has been added to and subtracted from the term in the

r
second set of parentheses. But this term is just (vo - v) ad so

that the variational equation for F is

dF 2 dt + I U3 _ ) G + r No - v) a F
d-- r 2 dt 2 ) * -d F C d

0

r
r (v - v) · a F (C. 20)

A _0 O -d
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EPOCH STATE FILTER

M INDEX !I .

M DIMENqN]nN( E,6X6),(R,6X3),(PHI,6X6),(W,6), (Rn,6),( )XF,6),

Ni (D),Ro),(DXOF,6),(PHI1,6X6),(PHI2,6X6),(PH13,6X6),(DVTN,6)

M BEGIN DO TO 2 FIIR I = 0(1)79

M 2 DO = RNDMN(1000)
S I

E *
M E = 0

M DO TlO 3-FOR = 0(7)1.4

M 3 E = 260(10
S I

M DO TO 4 FIR I = 21(7)35

I! 4 E '= 25
S I

E *

M R = O

M DO TO 6 Ff:lR I = 0(4)8

M e R =1
S I

M IP5PI = 1.5 PT

M 3PI = 3 PI

E 6
M ALPHA = 1.0 10

E 15
N MU = .3986012 10

M RMIJ = SORT( Ml )

MN RR = 6563365

M R = RR

M VC = SORT( Mll /.RR )

E 3
M PDOSC = 2 PI SORT(RR / MUJ)

M DT = PDOSC, / 72

M RE = 637R165



M J2 = .001O)P23

M .I = 0

Ivl T = 0

vM THETA = ()

M THETAI = o

F
M IZ = (0. (, ))

M, RrO = (RR. , 0)

MN ROI = R)

E _ _

iM IRO = (NTT( Rn

MN RO = RR

iM R = RO

M IR = IRO

E
M VO =(0, v. O)

E _ _

F. VOl- - \/

E
M DROF = (0. 0. 0)

M DRE = ORftF

F - -

M DVOE = DR(IE

M DO TO 1 6 FOR T = 1(1)80

M ITH = IZ7tITR

iM ITHO.= IZ':IRO

M DELTH = ( ITH.DRE/R - ITHO.DROE/RO

MN THETA = THFTA + DELTH



F _ 2 2 2 - -
M AD = ( -MI/R 1.5 J? ( RF/R ((1 - .5 CPHI ) IR + 2 CPHT 17)

Nyi CTHqEI' = C OS THFTaI) 

11P STHFTAI = SIN( THETAI)

RCI = ARVI( 0 R )T

NP;~ VOl ~R I = A= VR VAI ( Rn I 

Vil: AWVT =( V riI )-

~VIM .SIGMAi,] = ROT .Vnl / RMI1

E 2
V,! ' ALFAI = ' ; / RfIl - (vI / M I)

h; 2 2
Ivi IP = PI- ALFAI O R IT - SIGMAOI

M HI = I'RI'( IVi IP)

M RI = TP/ ( 1+ ( IP/ROI -1) CTHFTAI - HI SIGIMAOI STHFTAI/ ROT RMPU)

M Fl = I - PI (1 - CTHETAI)/ IP

M FTI = R141I SI(;MAll (1 - CTHFTAI)/ ROI IP - MOi STHETAI / ROT HI

P r, ( fT ~= Rl HI THFTAI / HI

GTI = 1 - RIll (1 - CTHFThI) / IP

RI = Fl RI + GI VDI

Nc IRI = IINIT( RI )

F
M CPHTI = IRT.7I

M VI = F1I PIl1 +GTI VOl

H =HI RP :'VT

E -2 2 2 -

M ADl = (( -MIJ/RI ) 1.5 J12 (RE/RI) (( - 5 CPHII ) IRI +

M 2 CPHTI T7))



AM RO : RUi + DROE

M VO = VO + DVOEF

M DO TO 13 FnR _ = 1(1)2

M DO TO 13 FOR K =0( 1)3

M CTHETA = CnS(THETA)

M STHFTA = 'JN(THETA)

E
M RO = /AVAI( RO

E
M VO = AVAI( \10 )

E -
M · .SIGMAOA(s = D.OV / RMIJ

E 2
M ALFA = (2'/ RO) - vn / Mi)

E 2 2
M P = ? RD - ALFA RO - SIGMAO

M H = SriRT( MI P

'M R = P / (1 + (p/RO -1) CTHETA - H SIGCMAn STHETA / RD RMtI)

M F = 1 - R (] - CTHETA)/ P

M FT = RMII RcIGMAn (1 - CTHETA)/ Rn P -. MU STHETA / RO H

M G = R RnD ~THFTA / H

M GT = 1 - RO (1 - CTHETA) / P

E

M R = -F Rn + G VO

E - -

M IR = IINIT( R

M . CPHI = IR.IZ

E - ,

M V = FT Ro + GT VO

EM H = 
M H R*V



E 2 -- - - 2
M DTHETA/DT = H / R + STHETA H*R + H (1 - CTHETA) R ).AD / H

M DRO/DT = (R RO/ (MIU P)) (1- CTHETA. ((RO- R) V + V R) AD - G AD

MN DVO/DT = (R / MiJ) (V - V) (VD V) AD + F AD

F 2 - - -
M DTHETAI/I)T =(HI/RI + (STHFTAI HI*RI + HI (1 - CTHETAI) RI).

F - 2

M A>DI / HJI )

M D)ROI/rl =(-(RI RNI/ (MIU IP)) (1 - CTHETAI) ((RlI - RI) VI + VI

E - - _

Nt RI) A] - GCI AnT)

NM D)VC/[rT = (RI / MU) (VOI - VI) (VOl - VI) ADI + FI AiI

M 13 DIFEO T,I)fDTHETA/DT,I)Ro/DT,DV(/DT)TDTHETAI/OT,DROI/DT,D)\VOI/I)T

E
N ROCNIC = tV/AI RC) - ROI)

Vl \/!()CNItG = b\/A ( \/[ - /n )

NI RO = /v\!AI ( RPD )

M' IR(U = IINTIH RTIC )

M IF THFTA <= lP5PI, GD TO 14

I'' IF THFTFA cORFO 3PI, ,n TO 12

E _ _

hM RESUME TFI), R., VI, THETA1, SLR, COGA, SMA, PERINl), RI, SDLNTAG

M CALL KWK.IONTCS., 4, O, Ri., V1, ( THETA - lP5PI ), MiJ

M RESUME TF'. R. V, THETA2, SLR, COGA, SMA, PERIOD, R, SOLNTAG



F
MN CALL PFP.rflNTCS, 3, 0, Rn, V\1, TFI, Mll, 0

Ivl RESUME TF .R1 ,\/VI,THFTAI,SLR ,COG A, SMA,PFRInD,R 1, SOL nTAC,AINIlI<iOLY,

F *
iM PHI l

F
i'l CALL REP.r'I'NITCS , , R, VI, TF2, MUJ, 0

F
1'1 * RFSUIJMF TF ,.R .VTHFTA2,SLR,COGA, SMA,PERIDR)tR,SFLNTAG,ANF\llMLy,

F -'
vi PHI 2

;i"~ PHI = PHT:I PHIT1.

Ni (Go Tll 1 5

Mii ]12 CALL 4WK.C:IINCS, 4, (. Rf, VFI, IP5PT, III

M RESIJ4F TFI, R1. V1, THETA1, SLR, C(G(A, SMA, PERIOl, R1, Sl'l IOTA(;

F
jvi CALL KWK.CrlNITS,, 4, 0, Ri, V1, 1P5Pi, Mtl

F
M RESIJMF TF2, P7. V2, THETA2, SI. R, CflGA, SMA, PEInnl, R2, SI, t!TAr;

F
M CALL KRWK.Ci(IlNTrS 4, n, R2, V\, (THETA - 3PI ) , ill

F
Mi* RESIMEF TFi, R. V, THFTA3, SLR, CflGA, SMA, PFRTII')'i, R, Ill NITA(;

vi~ ~CALL PFP.(:ONTCS, 3, n, Rn, \/vn, TF1, Mi, n

vM RESIJME TFI ,R1 .\/V,THETA1,SLR,COFGA ,SMA,PERIIDRl ,SR LiLNTA(;,,AI'NFln-LY,

F .
M* PHI1

MH~ ~CALL RFP.C:'lNICS, 3, 0, R]i \/1, TF2, HIi!, )

F 
F4 * *RESUME TF2 ,R2.V2,THETA2, SLR,CFlGA,SMA,PFRIflDR2,SllLNTAG,ANUMiOlM Y,



F *

M PHI?

M CALL PFP.CnNTCS, 3, O, R2, V2, TF3, MIJ, 0

F
ll RFSIIMF TF3,R,t,THETA3,SLR,COGA,SMA,PERIOD,R, SOL NTArG,ANnMOLY,

F 
gM PHI3

F * * ' 
M1 PHI = PH!3 PHI? PHI1

ilM GO TO) 15

M 14 CALL. VWK..(:nNlCS,, 4, n, Rt VO, THETA, MU

F
IM RESI.IME TF. R. V, THETA?, SLR, COGA, SMA, PERIOD, R, S.IlNTAG

E _ _
M CALL RFP.FrnNTCS, 3, (0, Rn, vn, TF, Mll, 0

F - - TH- LTAH
Mj RRESIUMr-E ' b .R , VI ·THE TA :2 SL R , COGA .SnA ,P F R ! [)11, R , S nL N TAG, ANflMtnLv YpH !

F - - T -C
M~ ]]5 R'] = PHI R
S j

F _ _

IR = IIi\iIT( R )

F 
lM An = RAO.( - RE) + ALPHA

F -, : _:
Ivi W = E R(I / Afl

F * --

Avi E = F - 1 R O E

M DVTN = RPi .- ROI

s0 0 

M IDVTN = R(l - RnI

S 1 ] 1

M DVTN = R(I - ROI

S ? 2 2

M DVTN = VII - VOI
S 3 o 0



DVThl. = \/I - Vol
4 1 1

DVTN = \il I- vnI
5 2 2

DXOE = W ( )0 - RO.DVTN )
1-1.

DR[1F = I)Xf[F

DRI)F = IXflfi
1. 1

DRI]E = i.)xFIE
2 2

DnvF = nxrIE
O

DVOE = nXnF

DXF = TPHT )X(i)F

DRE = DXF
o0 

DRE = DXf

DRE = DXF
2 ?

DVE = 'XF

DVE = DXFDVE = DXE
1 4

DVE = DXF
5

J = j + 1

16 IF J > 2, J =0

START AT PFGIN

NI

S

S

E
M
S

Wi

S

M
S

S, 1

S

'Iv

S

Ni

S

S

S

M

S

S

S
Ni



CONVENTIONAL STATE FILTER

INDEX . .1, Z

DIMFNF T-ilN( F.6X6) ,( B,6X3) ,( fW,6) ,( F,6Xh) , ( I , 6X6) ,(PHI,6X6),

( )0,8(1),( I)XF.6) ,( VTN, 6)

DC) TO 2 FIR I = 0( ] )7

DQ = RNI),Ni'( 10 o ) '

E = o

DI TFI 3 FIIR

3 E = 2601!([ 0

Di) TO /4 Flpl

4 F = 2'
I

In

[) I)

I D5 1 [

= (

Ti 

P = 0

D0 T1l 6

6 8 = 
I

FlIR

I = 0(7)14

I = 21(7)35

T = 0(7)35

F:ii) T = 0(4)8 

F = 0

F = 1

3

F = 1

17

J2 = .n01(()23

6
ALPHA = 1.0 10

R EG, I N

2

N1

Ni

M

M
S

F
M

M

sS

'vi

F

Mi

N

ivl

S

lvi

M

E

v

M
S

Ivi

E

M

I

T



RE = e37R165

15
MIJ = .39RJ,012 10

RR = 6563365

3
PDOSC := PT S)ORT(RR / MI)

DT = PDCISc / 360

VC = S)RT( MI) / RR

T1 = C,

J= 0

IZ = (o, O, 1)

Nl = I ), (, 0)

DELTA = Nl!

DELAD = Nhl

NllAD = Nil

RD = (RR, 0, 0)

vn = (0, vr,, o)

DRE = (0. (0. O)

DVE = ORF

DO TO 18 FOR I = 1( ].)80

PHI = 0

DO To 11 FOR

11 PHI = I
Z

Z = 0(7)35

M

E
M

M

MF

M

E

M

E
M

E
M

F
M

E

M

F

E
M

S



F - _ _
N DELTA =1I- TA + DRE.

9 ll= 1lil + D\WI- X/o>'C 0 9

M Dli TIT 1 6 F-FR I = 1 ( 1 ) 10

iv~M~~~~~ f] T)O l FrR K = n( 1 )3

M ANGL F = 2 PT T / PDDOSC

F
M, R[(1SCI = ( RR cnS( ANGLF), RR SIN( ANGLF), ()

MF'~ R = R[S)C'I + DELTA

M1 IR = l"l I ( R )

F
M R = AP\ VAI.( R )

M CPHT = IR. If

E - - - 2
M 0 = (( I)FIt - 2 R ).DELTA ) / P

F 2 1.5
j91 FO = Ni ( O + 3 ) / ( 1 + ( 1 +O )

E - 2 2 -
vM tAD = ( -i!/R ) 1.5 J2 ( RE/R ) ((I - 5 (CPHI ) R + 2 CPHI 1Z)

F :' s -- 2 *
I (; = I ( P ) 3 R R - R IDMATRIX

Nvl F = (,

S 1i n

M F =: (
S 19 1

M F =G
S 20 2

vi * F = Q-

S 24 3

Ni F = rF
S 25 4

fvl F = (;
S 26 5



F = (
30 6

F = ,
31 7

F = (
32 R

RT = PJSCil + DFLAD

IRT = IHlITt RT )

RT = AI-iVAL ( RT

TCPHT = TRT.JZ

2
nT = ((ILAD) - ? T) FL ) RT

2 1.5
F-T = O(T (3 + 3 QT + OT ) / (I + (1 + OT)

2 2 2 - -
ADT = (-Nl/RT ) 1.5 ,1? (RF/RT) ( 1].-5 TCPHI ) TRT + 2 TCPHT 17)

DDELT//)T = lill

DNlJ/DT = ( -l11 / RR ) ( FO R + O)FLTA ) + A D

DDELAI)/nr = RNIIAD

DONAl7D/Dl = (-MIJ/RR ( FOT RT + OFl. A)) + AnT

DPHT/DT = F PHT

] 6 DIFEn TI, PT. DDELTA/OT, DNI.i/DT I),)EID AD/D)T, )NIJA)/DOT, OPH] /1)

VOhSC = ( -VC SIN( ANI(;LF ), \/C COS( ANGLF ), 0

VT - \/()f: + NlJLAD

V = V(JC + Nil

Fi

S

M
IAS

M

N1
S

F
i17

PI

F

Vil

M
F

M
F
M

E
M

F

E
M

E
P1

F

F
MPA

F
(11

F

F

N1

E
It

F
M
E

F
N



E . . *'- * T
M E = PHI F PHT

~F ~ _-C C -C
M B .(E R ) + ALPHA
S .I .1

E - -C
M W = E i: / A
S I

F * -- C T- -

M E = ( ID - W R ) E ( ID - W R )+ ALPHA W W
S d ,I

M DVTN = DFL TA - DELAD
S o0 0 0

M DVTN = DBFI. T - D.EL AD
S 1 

M DVT'N = I)FI. TA - DELAD
S ? 2 2

M DVTN = Nl - NUAD
S 3 D O

M DVTN = NI - NHIAD
S 4 1 1

,M DVTN = Nil - NIJAD
S 5 2 2

mF - - DO B -C -
M DXE = W ( DO - R .DVTN )

S I-1 . J

M DRE = IXE
S O O

M DRE = DXF
S i ]

M DRE = DXF
S 2 2

M DVE = DX1
S n 0 3

M DVE =.DXF
S 1 4

M DVE = DXF
S 2 5

M J J + 1



M 18 IF J > 2. J, = 0

M CALL IlH. r(RAPH( S R) ,1. ,2,, 1 , 5, O, 1, ,21,2660,0

NF START AT 1IFGTN


